VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i
📚 Лекции по сверхвысокочастотной электронике для физиков [2 тома] [2003] Трубецков, Храмов
💾 Скачать книги
Лекции предназначены для физиков различных специальностей, интересующихся процессами взаимодействия электронов с электромагнитными полями, для научных работников, аспирантов и инженеров, проводящих исследования в области вакуумной СВЧ-электроники, радиофизики, радиотехники и физики плазмы. Они могут быть полезны студентам старших курсов соответствующих специальностей.
✏️ Рудольф Компфнер, создатель «лампы с бегущей волной» (без которой не было бы, например, спутниковой связи), сказал: «Самый успешный путь обучения — проделать все самому и учиться на собственных ошибках. Хороший путь — наблюдать, как кто-то проделывает это. Третий путь — слушать лекции о том, как и что делать; и последний стоящий путь — прочитать об этом». Поэтому лекции нужны, особенно, если они с обратной связью, и еще особеннее, когда преподаватель — это не просто "лектор", а применяет технологию "два с половиной", как назвал бы ее Компфнер. То есть показывает на занятиях элементы реального процесса решения задач. Это рискованная методика, которая требует от педагога самоуверенности, а от участников занятия — доверия. Создать такую ситуацию нелегко; лучшим примером был Ричард Фейнман. #электродинамика #электроника #физика #СВЧ #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
🔊 Акустическая левитация — это метод подвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения звуковых волн высокой интенсивности.
Обычно используются звуковые волны на ультразвуковых частотах.
Акустическая левитация — устойчивое положение весомого объекта в области узлов стоячей акустической волны. Частицы захватываются в узлах стоячей волны, образованной либо источником звука и отражателем (в случае рупора Ланжевена), либо двумя наборами источников (в случае TinyLev). Это зависит от размера частиц по отношению к длине волны, обычно в районе 10% или менее, а максимальный вес при левитации обычно составляет порядка нескольких миллиграммов. #акустика #механика #волны #колебания #физика #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
⚡️ Основные физические понятия электродинамики (Леннаучфильм)
✨ Электромагнитная индукция
Электродинамика — это наука о свойствах и закономерностях особого вида материи – электромагнитного поля, которое осуществляет взаимодействие между электрическими заряженными телами или частицами. Квантовая электродинамика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля.
Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля —фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.
Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся посредством электромагнитного поля, и, следовательно, также является предметом электродинамики.
Чаще всего под термином электродинамика по умолчанию понимается классическая электродинамика, описывающая только непрерывные свойства электромагнитного поля посредством системы уравнений Максвелла; для обозначения современной квантовой теории электромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый термин квантовая электродинамика. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки
💡 Physics.Math.Code // @physics_lib
📔 Физика в примерах и задачах [1983] Бутиков Е.И., Быков А.А., Кондратьев А.С.
📚 Физика для углубленного изучения (в 3-х книгах) [2004] Бутиков Е.И., Кондратьев А.С., Уздин В.М.
▪️▪️📕 Том 1. Механика
▪️▪️📗Том 2. Электродинамика. Оптика
▪️▪️📘Том 3. Строение и свойства вещества
📙 Физика для поступающих в вузы [1991] Бутиков Е.И., Быков А.А., Кондратьев А.С.
📓 Элементарная физика [1973] Гурский И.П.
💾 Скачать книги
Для учащихся школ, гимназий, лицеев с углубленным изучением физико-математических дисциплин, а также для подготовки к конкурсным экзаменам в вузы.
Для тех, кто захочет задонать на кофе☕️:
ВТБ: +79616572047
(СБП)
Сбер: +79026552832
(СБП)
ЮMoney: 410012169999048
#подборка_книг #физика #physics #механика #электродинамика #оптика #термодинамика
💡 Physics.Math.Code // @physics_lib
🤔 Когда после летней деградации пришел в школу и сидишь на контрольной...
#математика #информатика #задачи #fun
💡 Physics.Math.Code // @physics_lib
🔻 Теорема Морли о трисектрисах — одна из теорем геометрии треугольника. Трисектрисами угла называются два луча, делящие угол на три равные части.
Точки пересечения смежных трисектрис углов произвольного треугольника являются вершинами правильного (равностороннего) треугольника.
🎲 Формула Эйлера для простых чисел
f(n) = n² + n + 41
f(n) = n² - 79n + 1601 = (n - 40)² + (n - 40) + 41
Хочешь сделать математику интересной?
У тебя есть талант находить подход к сложным уравнениям? 🗒✍️
Тогда тебе к нам!
«Алабуга Политех» формирует команду талантливых математиков! 🧮
Мы ищем:
🔍 Увлеченных преподавателей, которые смогут вдохновить учеников на увлекательное погружение в мир знаний и открытий!
🔍 Креативных педагогов, способных сделать математику интересной и понятной для всех!
🔍 Профессионалов, которые готовы бросить вызов стандартной системе обучения и развеять множество мифов о математике!
Твоя задача:
✅ помочь восполнить пробелы по математике у участников эксперимента за курс 1 - 9 классов;
✅ найти нестандартные решения в преподавании;
✅ стать проводником в мир сложных формул и уравнений!
Присоединяйся к команде «Большого математического эксперимента» где знание и стремление пересекаются!
Оставляй заявку на сайте прямо сейчас и докажи, что математика - это просто!
Σ Сумма куба из n натуральных чисел — это математический шаблон, по которому на конкурсном экзамене задавались различные вопросы. Итак, сумма куба из n натуральных чисел получается по формуле [n²(n+1)²]/4 где S - сумма, а n - количество натуральных чисел. Натуральные числа - это числа , начинающиеся с 1 и заканчивающиеся на бесконечности ∞.
Доказательство основывается на тождестве:
n⁴ – (n – 1)⁴ = n³ – 6n² + 4n – 1
n = 1, 2, 3,..n
⚙️ Знания законов физики помогает в реальной жизни
Расскажите в комментариях о последней ситуации, когда вам помогли такие знания ✏️
#физика #механика #наука #техника #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
⚡️ Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Открытия в области электричества сделали возможным генерацию различными способами электрической энергии и передачу её потребителю с помощью относительно простых, компактных, дешевых и лёгких в прокладке и монтаже электрокабелей с последующим преобразованием электрической энергии в любой другой необходимый вид энергии.
✨ Самой высоковольтной ЛЭП в мире являлась линия Экибастуз — Кокшетау, номинальное напряжение — 1150 кВ. Однако, в настоящее время линия эксплуатируется под вдвое меньшим напряжением — 500 кВ. В 1970-х годах в Советском Союзе в процессе подготовки к строительству передачи постоянного тока Экибастуз — Центр, прорабатывались детали проекта будущей электропередачи следующего класса напряжений 2000 кВ — 2200 кВ для транспорта энергии с электростанций КАТЭКа в европейскую часть страны, но последовавшие в стране события «похоронили» оба этих проекта.
При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц (λ = c/ν = 6000 км, λ/4 = 1500 км)
, провод работает как излучающая антенна. Это излучение сильно подавлено целым рядом факторов. И на расстоянии в четверть длины волны от ЛЭП фактически полностью отсутствует. #физика #электричество #магнетизм #техника #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
📙 Метод вычисления интегралов от специальных функций (теория и таблицы формул) [1978] Маричев О.И.
💾 Скачать книгу
Предназначена для специалистов научно-исследовательских лабораторий, конструкторских бюро, вычислительных центров, математиков, физиков, инженеров, преподавателей и аспирантов вузов. Книга послужит не только справочником интегралов, но и учебно-методическим пособием по теории специальных функций, доступным для студентов старших курсов.
(Таблица не приводится в данной скан-версии. Значения данных интегралов можно найти в любых соответствующих справочниках).
⚙️ Самым мощным и большим в мире двигателем для морских судов является является двухтактный турбокомпрессорный дизельный двигатель Wärtsilä-Sulzer RTA96. Двигатель разработан финской машиностроительной компанией Wärtsilä. Он исполинских размеров и самый мощный и большой из построенных для сферы транспорта в общем. Мощность двигателя составляет 107,4 тыс. л.с. Объем 14-ти цилиндрового двигателя составляет 25.5 тыс. литров. Размеры двигателя следующие: длина - 26,6 м., высота - 13,5 м., вес - 2300 тысяч тонн (2,3 миллионов килограммов!). Только вдумайтесь в эти цифры! Работает Wärtsilä-Sulzer RTA96 на мазуте, потребляя 13 тыс. литров в час, что равно 39 баррелям нефти в час. Сила крутящего момента равна 7.603.850 млн. Н.м. при 102 об/мин. Общий вес коленчатого вала равна 300 тоннам. Этот двигатель установлен, например, на контейнеровозе Emma Maersk. Emma Maersk является крупнейшим действующим кораблем в мире, его стоимость оценивается в 170 000 000$.
Самым мощным авиационным турбореактивным двигателем является американский двигатель GE90-115B, который устанавливается на дальнемагистральные самолеты Boeing 777. Диаметр двигателя равен 3,25 м., длина - 7,49 м., вес - 7,5 тонн. Сила тяги двигателя, а вернее, его мощность равна 569.000 тыс. Н.м. Двигатель является лучшим, эффективным и экономичным в мире авиационным двигателем для широкофюзеляжной авиации. Материалы, из которых изготовлен двигатель и его компрессорные лопатки, способны выдерживать огромные температуры до 1316 градусов по Цельсию.
Переходим к самому мощному автомобильному двигателю в мире, который был установлен на легковом автомобиле. Таковым является двигатель SRT Viper, VX, который выпускается с 2013 и по настоящее время. Его объем равен 8,4 литра, а мощность - 649 л.с. Создан компанией "Chrysler Group". Двигатель в компоновке v10, крутящий момент которого равен 813 Н.м. при 4.950 тыс. об. в минуту. При таких отличных параметрах максимальная скорость автомобиля составляет 330 км/час. Разгон автомобиля с таким двигателем с 0 до 100 км/час автомобиль составляет всего 3,3 секунды.
Самым мощным в истории ракетным двигателем, да и, вообще, самым мощным двигателем из когда-либо созданных человеком, является ракетный двигатель F-1, использовавшийся на американской сверхтяжелой ракете-носителе Saturn V. Двигатель был спроектирован в США в начале 60-х годов ХХ века. Высота самого ракетного двигателя F-1 составляла 5,64 м., высота ракеты-носителя Saturn V с установленными в него двигателями F-1 составляла без малого 110,65 м., что, на минуточку, выше выше статуи Свободы в США вместе с ее постаментом. Мощность только одного ракетного двигателя F-1 составляла 190.000.000 млн. л.с. Во время старта тяговая сила Saturn V составляла 34 500 000 Н.м. Такая мощность позволяла вывести на орбиту груз, общим весом 130 тонн. Отметим, что ракета-носитель Saturn V использовалась с 1967 по 1973 годы. Всего было проведено 13 успешных запусков этой ракеты. Примечательно, что 1973 году, ракета Saturn V с двигателями F-1 стартовала в последний раз. Тогда с ее помощью была выведена на орбиту американская космическая станция "Скайлэб". #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
💡 Physics.Math.Code // @physics_lib
📚 Интегралы и ряды [3 тома] Прудников, Брычков, Маричев
💾 Скачать книги
📕 Интегралы и ряды. Том 1. Элементарные функции [1981] Прудников А.П., Брычков Ю.А., Маричев О.И.
📗 Интегралы и ряды. Том 2. Специальные функции [1983] Прудников А.П., Брычков Ю.А., Маричев О.И.
📘 Интегралы и ряды. Том 3. Специальные функции. Дополнительные главы [2003] Прудников А.П., Брычков Ю.А., Маричев О.И.
▪️ Прудников А.П. — советский и российский математик, специалист в области специальных функций и интегральных преобразований.
▪️ Брычков Ю.А. — Доктор физико-математических наук, автор статей научно-образовательного портала «Большая российская энциклопедия».
▪️ Маричев О.И. — советский и американский математик, доктор физико-математических наук. Автор справочников по интегралам.
#математика #math #maths #алгебра
#высшая_математика #математический_анализ #интегральное_исчисление #подборка_книг
💡 Physics.Math.Code // @physics_lib
🌀 Анимация графиков различных математических функций
„Именно математика даёт надёжнейшие правила: тому кто им следует — тому не опасен обман чувств.“ — Леонард Эйлер швейцарский, немецкий и российский математик 1707–1783
#математика #math #gif #animation #geometry
💡 Physics.Math.Code // @physics_lib
⚡️ IT-обучение теперь в Telegram!
В cвязи с недавнем замедлением Ютуба — лучшие обучающие каналы переехали в Telegram
Вот каналы для айтишников:
📱 Python: @Python
📱 GitHub: @GitHub
👩💻 С/С++: @Cpp
📱 Frontend: @Frontend
⚙️ Backend: @Backend
🤓 Общее айти: @portalToIT
👩💻 Java: @Java
👩💻 C#: @Csharp
🖥 Базы Данных & SQL: @SQL
👩💻 Golang: @Golang
🖥 PHP: @PHP
👩💻 DevOps: @DevOps
🖥 Data Science: @DataScience
🤔 Хакинг & ИБ: @InfoSec
📱 Маркетинг: @Marketing
🖥 Дизайн: @Design
🐞 Тестирование: @QA
👩💻 Моб. разработка: @MobDev
👩💻 Разработка игр: @GameDev
➡️ Сохраняйте себе, чтобы не потерять
🔴Двойной маятник — простейший механизм для демонстрации хаотичного движения
В физике и математике, в отрасли динамических систем, двойной маятник — это маятник с другим маятником, прикреплённым к его концу. Двойной маятник является простой физической системой, которая проявляет разнообразное динамическое поведение со значительной зависимостью от начальных условий. Движение маятника руководствуется связанными обыкновенными дифференциальными уравнениями. Для некоторых энергий его движение является хаотическим. Система считается хаотичной, если обладает высокой чувствительностью к начальному состоянию. Две идентичные системы с мало отличающимися начальными положениями будут заметно отличаться спустя какое-то время. #видеоуроки #физика #механика #gif #математика #physics #math #динамика
💡 Physics.Math.Code // @physics_lib
📔 Физика в примерах и задачах [1983] Бутиков, Быков, Кондратьев
Книга занимает промежуточное положение между учебником физики и сборником задач. Цель авторов—научить читателя рассуждать, находить ответы на новые вопросы, относящиеся к известной ему области, довести его до глубокого понимания сути рассматриваемых явлений. В этом издании нашли отражение последние изменения содержания курса физики средней школы и программ конкурсных экзаменов в вузы.
📚 Физика для углубленного изучения (в 3-х книгах) [2004] Бутиков, Кондратьев, Уздин
Учебник принципиально нового типа. Последовательность изложения соответствует логической структуре физики как науки и отражает современные тенденции ее преподавания. Материал разделен на обязательный и дополнительный, что позволяет строить процесс обучения с учетом индивидуальных способностей учащихся, включая организацию их самостоятельной работы. Задачи служат как для получения новых знаний, так и для развития навыков исследовательской деятельности.
📕 Том 1. Механика — В первом томе изучаются основы механики, изложение которой строится с учётом общих методологических принципов физики, таких, как принцип симметрии, относительности, соответствия и т.д.
📗Том 2. Электродинамика. Оптика — Второй том включает в себя основы электродинамики и оптики, изложение которых базируется на фундаментальных представлениях об электромагнитном поле без детализации структуры вещества, рассматриваемого здесь чисто феноменологически.
📘Том 3. Строение и свойства вещества — В третьем томе на основе развития фундаментальных механических и электромагнитных представлений развивается последовательная картина строения и свойств вещества от атома до Вселенной.
📙 Физика для поступающих в вузы [1991] Бутиков, Быков, Кондратьев
Книга представляет собой пособие по курсу физики средней школы. Особое внимание в ней уделяется тем вопросам, которые по тем или иным причинам не изложены в школьном учебнике или изложены там недостаточно глубоко и подробно.
📓 Элементарная физика [1973] Гурский
Книга является пособием по физике для поступающих в вузы, ее можно также использовать как введение в вузовский курс физики. В ней последовательно и кратко рассмотрен весь элементарный курс физики, при этом основное внимание обращено на решение типовых задач и примеров.
💡 Physics.Math.Code // @physics_lib
🔥 Свечение газов вблизи катушки Тесла
Коллекция газов для спектрального излучения: чистые образцы водорода, азота и пяти благородных инертных газов подвергаются воздействию высокочастотного импульсного поля миниатюрной катушки Тесла. Каждый газ имеет характерное напряжение пробоя и спектр излучения. Обратите внимание, что азот имеет самое высокое напряжение пробоя и светится только в непосредственной близости от катушки, где поле наиболее интенсивно, тогда как у неона и гелия самое низкое напряжение пробоя, и они начинают светиться на большем расстоянии от катушки. Цвет каждого газа обусловлен сочетанием цветов, излучаемых электронными энергетическими переходами, характерными для каждого элемента - основы спектроскопии. Трубка Криптона также демонстрирует интересные колебания с этой конкретной катушкой Теслы. #атомная_физика #химия #физика #physics #видеоуроки #электроника #gif
💡 Physics.Math.Code // @physics_lib
⚙️ Роторный двигатель — наименование семейства близких по конструкции тепловых двигателей, объединённых ведущим признаком — типом движения главного рабочего элемента. Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор — совершает вращательное движение.
Двигатели должны давать на выходе вращательное движение главного вала. Именно этим роторные ДВС отличаются от наиболее распространенных сегодня поршневых ДВС, в которых главный подвижный рабочий элемент (поршень) совершает возвратно-поступательные движения. В роторных моторах, где главный рабочий элемент и так вращается, не требуется дополнительных механизмов для получения вращательного движения. В поршневых же моторах приходится применять громоздкие и сложные кривошипно-шатунные механизмы для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.
С древности известны колёса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. Самый первый тепловой двигатель в истории — эолипил Герона Александрийского (I век н. э.) также относится к роторным двигателям. В XIX веке, вместе с массовым появлением поршневых паровых машин, начинают создаваться и активно использоваться и роторные паровые двигатели. К ним можно отнести как паровые роторные машины с непрерывно открытыми в атмосферу камерами расширения — это паровые турбины, так и паровые машины с герметично запираемыми камерами расширения: к ним, например, можно отнести «коловратную машину» Н. Н. Тверского, которая успешно эксплуатировалась во многих экземплярах в конце XIX века в России.
С началом массового применения ДВС в первые десятилетия XX века начались и работы по попыткам создать эффективный роторный ДВС. Тем не менее эта задача оказалась большой инженерной трудностью, и лишь в 1930-х годах была создана работоспособная дизельная турбина, которая по классификации относится к роторным ДВС с непрерывно открытой в атмосферу камерой сгорания.
Работоспособный роторный ДВС с герметично запираемой камерой сгорания удалось создать лишь в конце 1950-х годов группе исследователей из немецкой фирмы NSU, где Вальтер Фройде и Феликс Ванкель разработали схему роторно-поршневого двигателя.
В отличие от газовых турбин, которые широко и массово применяются уже более 50 лет, роторный двигатель Ванкеля и Фреде не показал очевидных преимуществ перед поршневыми ДВС, а также имел заметные недостатки, которые и сдерживают массовое применение этих моторов в промышленности. Но потенциально широкий набор возможных конструктивных решений создают широкое поле для инженерных поисков, которые уже привели к появлению таких конструкций, как роторно-лопастной двигатель Вигриянова, трёхтактный и пятитактный роторные двигатели Исаева, 2-тактный роторно-поршневой двигатель и весьма перспективный двигатель LiquidPiston. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
💡 Physics.Math.Code // @physics_lib
🌿 Папоротник Барнсли — это фрактал, названный в честь британского математика Майкла Барнсли, который впервые описал его в своей книге Фракталы повсюду. Папоротник является одним из основных примеров самоподобных множеств, т. е. это математически сгенерированный узор, который может быть воспроизведен при любом увеличении или уменьшении. Как и треугольник Серпинского, папоротник Барнсли показывает, как графически красивые структуры могут быть построены на основе повторяющегося использования математических формул с помощью компьютеров.
Хотя папоротник Барнсли теоретически можно нарисовать вручную с помощью ручки и миллиметровой бумаги, количество необходимых итераций исчисляется десятками тысяч, что делает использование компьютера практически обязательным. Множество различных компьютерных моделей папоротника Барнсли пользуются популярностью у современных математиков. Пока математика правильно запрограммирована с использованием матрицы констант Барнсли, будет получаться одна и та же форма папоротника. #нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы
💡 Physics.Math.Code // @physics_lib
💢 Астроида (от греч. αστρον — звезда и ειδος — вид, то есть звездообразная)— плоская кривая, описываемая точкой окружности радиуса r, катящейся по внутренней стороне окружности радиуса R = 4r
. Иначе говоря, астроида — это гипоциклоида с модулем k = 4
. Астроида также является алгебраической кривой 1 рода (и шестого порядка).
#математика #math #mathematics #наука #science #алгебра #algebra #видеоуроки
💡 Physics.Math.Code // @physics_lib
⚙️ Работающая модель одноцилиндрового бензинового мини двигателя
▪️Коэффициент полезного действия современного двигателя 25±5%. Работа ДВС происходит не в идеальных условиях. Рабочая температура двигателя 80-95°. Мотор греет вокруг себя воздух, охлаждающую жидкость, масло, радиатор, выхлоп и другие узлы. На этом теряется около 35%
Хотя современные автомобили и снабжены электронным блоком управления, он не полностью решает проблему того, что топливо сгорает не полностью и его часть выходит вместе с выхлопными газами. Это уже ~25% потерь. Еще 20% забирают механические потери. Поршни, кольца, шестерни и прочие элементы, где присутствует трение.
▪️Первый двигатель был создан в 1804 году. В 1804 году французско-швейцарский изобретатель Франсуа Исаак де Риваз построил первый двигатель внутреннего сгорания, который был предназначен для работы с насосом. Современные моторы переняли от него воспламенение топлива с помощью свечей зажигания. Двигатель де Риваза не имел механизма синхронизации, поэтому поступление топлива и зажигание осуществлялось вручную.
▪️Самый большой двигатель имеет объем 1820 литров. Этот дизельный двигатель был создан компанией Wärtsilä и на сегодняшний день является самым большим и самым мощным в мире. Этот малыш весит 2300 тонн, а габариты его 13.5 метров в высоту и 26.6 метров в длину. Его 14 цилиндров выдают 108876 лошадиных сил и 7603850 ньютон-метров крутящего момента.
▪️Самый большой пробег двигателя ~4 800 000 км. Рядный четырех-цилиндровый двигатель 1778 куб.см устанавливался в Volvo P1800 в кузове которого и был накатан мировой рекорд. Расстояние на которое проехал этот автомобиль можно представить как более 100 кругосветных путешествий или 5 расстояний до Луны и обратно. Правда чтобы за это время было проведено 2 капитальных ремонта двигателя.
▪️Самый маленький двигатель имеет рабочий объем цилиндра 1 мм³. Этот двигатель изготовили в Англии, примечательно что для его работы используется не дизельное топливо, а особая смесь метанола и водорода. При этом общий принцип остается такой же, при сжатии горючее воспламеняется передавая энергию на коленвал. При этом коленвал раскручивается до 50 000 оборотов в минуту, а мощность чуть более чем 0,015 лс. Общие размеры мотора составляют 5*15*3 мм, такой двигатель можно расположить на большом пальце руки человека. Добиться этого позволило изготовление ультратонких плоских элементов. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
💡 Physics.Math.Code // @physics_lib
🧪 Закон сообщающихся сосудов — один из законов гидростатики, гласящий, что в сообщающихся сосудах уровни однородных жидкостей, считая от наиболее близкой к поверхности земли точки, равны. Это происходит потому что напряжённость гравитационного поля и давление в каждом сосуде постоянны (гидростатическое давление). Это было обнаружено Симоном Стевином.
Рассмотрим два сообщающихся сосуда, в которых находится жидкость плотностью ρ. Давление жидкости в I сосуде расписывается по формуле p₁ = ρgh₁, где h₁ — высота столба в I сосуде. Давление жидкости во II сосуде p₂ расписывается аналогично как p₂ = ρgh₂ , где h₂ — высота столба во II сосуде. Так как система открытая, то давления равны, и p₁ = p₂ ⇒ ρgh₁ = ρgh₂ ⇒ h₁ = h₂.
Аналогично предыдущему утверждению, справедливому только для однородных жидкостей, можно доказать и следующее утверждение: отношение уровней жидкостей обратно пропорционально отношению их плотностей. В XVII веке Блез Паскаль доказал, что давление, оказываемое на молекулу жидкости, передается в полном объеме и с одинаковой интенсивностью во всех направлениях.
Со времен Древнего Рима концепция сообщающихся сосудов использовалась для внутренней сантехники через водоносные слои и свинцовые трубы. Вода достигнет одинакового уровня во всех частях системы, которые действуют как сообщающиеся сосуды, независимо от того, какая самая низкая точка труб – хотя на практике самая низкая точка системы зависит от способности сантехники выдерживать давление жидкости.
В городах часто используются водонапорные башни , благодаря которым городская водопроводная система выполняет функцию сообщающихся сосудов, распределяя воду на верхние этажи зданий с достаточным давлением. Гидравлические прессы , использующие системы сообщающихся сосудов, широко используются в различных промышленных процессах. #физика #опыты #эксперименты #наука #science #physics #механика #гидродинамика #видеоуроки #гидростатика
💡 Physics.Math.Code // @physics_lib
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Хакинг: t.me/linuxkalii
C#: t.me/csharp_ci
Devops: t.me/devOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: /channel/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: /channel/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: /channel/addlist/BkskQciUW_FhNjEy
📙 Метод вычисления интегралов от специальных функций (теория и таблицы формул) [1978] Маричев О.И.
Излагается единый простой метод, позволяющий вычислить большое количество определенных интегралов от различных элементарных и специальных функций. Основой метода являются теорема о свертке для преобразования Меллина, свойства гамма-функции и теория вычетов. Приводится специальная таблица преобразований Меллина, из каждой пары формул которой читатель может вывести значения соответствующих интегралов.
В книгу включены вспомогательные сведения, с помощью которых систематически излагаются элементы современной теории специальных функций гипергеометрического типа. Разобраны характерные примеры вычисления интегралов в обычных и особых случаях, указана связь получаемых результатов с известными. Выведены формулы обращения общих классов интегральных преобразований сверточного и несверточного типов с б'-функциями Мейера в ядрах, которые содержат частными случаями преобразования Фурье, Лапласа, Меллина, Ганкеля, Стилтьеса, Мейера, Конторовича-Лебедева, Мелера-Фока и др.
Предназначена для специалистов научно-исследовательских лабораторий, конструкторских бюро, вычислительных центров, математиков, физиков, инженеров, преподавателей и аспирантов вузов. Книга послужит не только справочником интегралов, но и учебно-методическим пособием по теории специальных функций, доступным для студентов старших курсов. #алгебра #специальные_функции #задачи #математика #математический_анализ #math #mathematics #дифференциальное_исчисление #интегральное_исчисление
💡 Physics.Math.Code // @physics_lib
💫 ЭМ поле и ртуть. Почему она крутится? 🌀
Под действием электрического поля ртуть отдает один или два своих валентных электрона, образуя электроположительные ионы, и поэтому она может проводить электричество. Однако, атомы ртути (Hg) прочно удерживают свои валентные электроны и с трудом предоставляют их в «общее пользование». Но когда начинает течь ток, кристаллическая решётка ртути оказывается неустойчивой. В опыте имеем скрещенные поля: электрическое поле E и магнитное поле B, вектора которых направлены под углом π/2. В таких полях заряженные частицы из-за силы Лоренца двигаются по траектории, представляющей собой эпициклоиду. Но для наблюдателя кажется, что мы имеем вихревой круговой поток ртути. Разумеется, четкую математическую эпициклоиду получить не получится, ведь мы должны учитывать огромное множество заряженных частиц, а для более корректного описания придется подключать уравнение Навье - Стокса. В совокупности с неустойчивостью ДУ и неоднородных граничных условий описание потока представляет собой очень сложную математическую задачу. #гидродинамика #механика #электричество #магнетизм #физика #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
📕 Интегралы и ряды. Том 1. Элементарные функции [1981] Прудников А.П., Брычков Ю.А., Маричев О.И.
Книга содержит неопределенные и определенные (в том числе кратные) интегралы, конечные суммы, ряды и произведения с элементарными функциями. Она является наиболее полным справочным руководством, включает результаты, изложенные в аналогичных изданиях, а также в научной литературе. Книга предназначена для широкого круга специалистов в различных областях знаний, а так же для студентов вузов.
📗 Интегралы и ряды. Том 2. Специальные функции [1983] Прудников А.П., Брычков Ю.А., Маричев О.И.
Книга содержит неопределенные и определенные интегралы, конечные суммы и ряды со специальными функциями. Она является наиболее полным справочным руководством, включает результаты, изложенные в аналогичных изданиях, а также в научной и периодической литературе. Книга предназначена для широкого круга специалистов в различных областях знаний, а также для студентов вузов.
📘 Интегралы и ряды. Том 3. Специальные функции. Дополнительные главы [2003] Прудников А.П., Брычков Ю.А., Маричев О.И.
Книга содержит неопределенные и определенные интегралы, суммы и ряды, не вошедшие в предыдущие два тома. Приведены таблицы представлений обобщенных гипергеометрических функций, G-функции Мейера и их преобразований Меллина. Помещены разделы, посвященные свойствам гипергеометрических функций, G-функции Мейера и H-функции Фокса. Первое издание 1986 г. Книга предназначена для широкого круга специалистов в различных областях, а также для студентов высших учебных заведений.
#математика #math #maths #алгебра
#высшая_математика #математический_анализ #интегральное_исчисление #подборка_книг
💡 Physics.Math.Code // @physics_lib
👩💻 Множество Мандельбро́та — множество точек c на комплексной плоскости, для которых рекуррентное соотношение
z ₙ ₊ ₁ = z ₙ ² + C при z₀ = 0 задаёт ограниченную последовательность. Иными словами, это множество таких c, для которых существует такое действительное R, что неравенство |z ₙ| < R выполняется при всех натуральных n. Определение и название принадлежат французскому математику Адриену Дуади, в честь математика Бенуа Мандельброта.
Множество Мандельброта является одним из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям. Его фрагменты не строго подобны исходному множеству, но при многократном увеличении определённые части всё больше похожи друг на друга.
Множество Мандельброта находит применение для анализа возникновения турбулентности в физике плазмы и термодинамике, развития бифуркаций и т. д.
Дауди и Хаббард доказали, что множество Мандельброта является связным, хотя в это и трудно поверить, глядя на хитрые системы мостов, соединяющие различные его части. Связность множества Мандельброта следует из того, что оно является пересечением вложенных связных компактных множеств.
Однако неизвестно, является ли оно локально связным. Эта известная гипотеза в комплексной динамике получила название MLC (англ. Mandelbrot locally connected). Многие математики прилагают усилия к её доказательству. Жан-Кристоф Иокко (Jean-Christophe Yoccoz) доказал, что гипотеза верна во всех точках с конечной ренормализацией, затем многие другие математики доказывали справедливость гипотезы во многих отдельных точках множества Мандельброта, но общая гипотеза остается недоказанной.
Мицухиро Шишикура (Mitsuhiro Shishikura) доказал, что размерность Хаусдорфа границы множества Мандельброта равна 2. Но остается неизвестным ответ на вопрос, имеет ли граница множества Мандельброта положительную меру Лебега на плоскости.
Число итераций для любой точки в построении множества очень близко к логарифму электрического потенциала, который возникает, если зарядить множество Мандельброта. #математика #math #gif #animation #geometry #фракталы #тфкп
💡 Physics.Math.Code // @physics_lib
Розыгрыш Machine Learning футболок
В честь запуска сайта с ML-вакансиями команда Data Secrets запускает розыгрыш 10 футболок для истинных любителей глубокого обучения.
Это лимитированная линейка нашего бренда. Каждая футболка – целый альманах, на котором любой найдет любимую архитектуру. Гарантирует +100 очков к прохождению собеса или экзамена
Для участия нужно всего лишь быть подписанным на два наших канала: @data_secrets и @data_secrets_career, – и нажать кнопку "Участвовать" под этим постом.
Итоги подведем 18 сентября в 18:00. Желаем удачи!