physics_lib | Unsorted

Telegram-канал physics_lib - Physics.Math.Code

135519

VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i

Subscribe to a channel

Physics.Math.Code

📈📉Опыты по физике: Плавление, кристаллизация, испарение, конденсация

Плавление и испарение — признаки изменения агрегатного состояния кристаллического вещества. Эти процессы связаны с переходом вещества из твёрдого состояния в жидкое (плавление) или из жидкого состояния в газообразное (испарение).

▪️ Плавление — переход кристаллического вещества из твёрдого состояния в жидкое. Плавление происходит при определённой температуре — температуре плавления. Каждое вещество имеет свою температуру плавления. Сопровождается поглощением энергии, так как к веществу необходимо подводить теплоту. Внутренняя энергия вещества увеличивается. Температура вещества не изменяется до тех пор, пока всё оно не расплавится.

▪️ Испарение — переход вещества из жидкого состояния в газообразное, который происходит с поверхности жидкости. Происходит при любой температуре. Скорость испарения зависит от природы жидкости, температуры, площади поверхности и наличия или отсутствия движения воздуха над поверхностью. Улетевшие молекулы уносят с собой энергию, поэтому при испарении происходит уменьшение температуры жидкости (охлаждение).

▪️ Кристаллизация — процесс образования кристаллов из газов, растворов, расплавов или стёкол. Также кристаллизацией называют образование кристаллов с данной структурой из кристаллов иной структуры (полиморфные превращения) или переход из жидкого состояния в твёрдое кристаллическое. Кристаллизация начинается при охлаждении жидкости до определённой температуры — температуры кристаллизации, которая равна температуре плавления. Во время процесса температура не меняется. Зарождение центров кристаллизации — образование кластеров с упорядоченностью, характерной для кристалла. Рост кристаллов — увеличение размера частиц за счёт присоединения атомов или молекул из жидкости. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

Изохорный процесс

🔥 Термостат

💧 Капля воды падающая на горячий металл 💥в Slow motion

💧 Эффект Лейденфроста

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать

«Стопоходящая машина» — изобретение русского изобретателя и математика Пафнутия Чебышёва. Устройство было представлено на Всемирной выставке в Париже в 1878 году. Особенности стопоходящей машины:
▪️ Преобразовывала вращательное движение в движение по сложной траектории. Ноги машины сначала двигались горизонтально относительно механизма, а потом поднимались и быстро перемещались в исходную точку.
▪️ Из-за сцепления с поверхностью горизонтальное движение приводило к переносу корпуса вперёд.
▪️ Пока две разнесённые по диагонали ноги двигались, две другие оставались неподвижны. Такой ход соответствовал движению лошади или иного четвероногого животного рысью.
▪️ Не могла поворачивать и перемещалась только по прямой.
▪️ Не имела собственного двигателя, поэтому была больше механизмом, чем машиной. Чтобы привести её в движение, необходимо было тянуть за верёвку или подталкивать сзади.

⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!

🎻 Когда Lego играет на гитаре лучше, чем ты...

⚙️ Lego MindStorm

👾 Что будет, если надолго оставить инженера с конструктором Lego

#техника #конструктор #ARM #программирование #механика #разработка #микроконтроллеры

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🔴🔵Задача «никакие три точки не лежат на одной прямой» — одна из задач комбинаторной геометрии, состоящая в нахождении количества точек, которые можно расположить на решётке n×n так, чтобы никакие три точки не находились на одной прямой.

Брасс, Мозер и Пах назвали задачу «одним из самых старых и интенсивно изучаемых геометрических вопросов, касающихся точек решётки»

#математика #math #геометрия #графика #наука #дискретная_математика #графы #задачи

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📕 N-угольники [1973] Бахман, Шмидт

💾 Скачать книгу

Глава 1. Циклические классы n-угольников.
Глава 2. Циклические отображения n-угольников.
Глава 3. Об изобарических циклических отображениях.
Глава 4. Отображения усреднения.
Глава 5. Идемпотентные элементы и булевы алгебры.
Глава 6. Основная теорема о циклических классах.
Глава 7. Идемпотент-вложение. Факторкольцо кольца главных идеалов.
Глава 8. Булевы алгебры n-угольников (теория I).
Глава 9. Булевы алгебры n-угольников (теория II).
Глава 10. Рациональные компоненты n-угольника.
Глава 11. Комплексные компоненты n-угольника.
Глава 12. Вещественные компоненты n-угольника.

#математика #math #геометрия #графика #наука #дискретная_математика #графы #физика #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📘 CUDA Fortran for Scientists and Engineers [2011] Greg Ruetsch, Massimiliano Fatica

This document in intended for scientists and engineers who develop or maintain computer simulations and applications in Fortran, and who would like to harness parallel processing power of graphics processing units (GPUs) to accelerate their code. The goal here is to provide the reader with the fundamentals of GPU programming using CUDA Fortran as well as some typical examples without having the task of developing CUDA Fortran code becoming an end in itself. The CUDA architecture was developed by NVIDIA to allow use of the GPU for general purpose computing without requiring the programmer to have a background in graphics. There are many ways to access the CUDA architecture from a programmer’s perspective, either through C/C++ from CUDA C and Open CL, or through Fortran using PGI’s CUDA Fortran. This document pertains to the latter approach. PGI’s CUDA Fortran should be distinguished from the PGI Accelerator product, which is a directive based approach to using the GPU. CUDA Fortran is simply the Fortran analog to CUDA C. The reader of this book should be familiar with Fortran 90 concepts, such as modules, derived types, and array operations. However, no experience with parallel programming (on the GPU or otherwise) is required. Part of the appeal of parallel programming on GPUs using CUDA is that the programming model is simple and novices can get parallel code up and running very quickly. CUDA is a hybrid programming model, where both GPU and CPU are utilized, so CPU code can be incrementally ported to the GPU. This document is divided into two main sections, the first is a tutorial on CUDA Fortran programming, from the basics of writing CUDA Fortran code to some tips on optimization. The second part of this document is a collection of case studies that demonstrate how the principles in the first section are applied to real-world examples.

📗 CUDA Fortran для инженеров и научных работников [2014] Грегори Рутш, Массимилиано Фатика


Fortran – один из важнейших языков программирования для высокопроизводительных вычислений, для которого было разработано множество популярных пакетов программ для решения вычислительных задач. Корпорация NVIDIA совместно с The Portland Group (PGI) разработали набор расширений к языку Fortran, которые позволяют использовать технологию CUDA на графических картах NVIDIA для ускорения вычислений.

Книга демонстрирует всю мощь и гибкость этого расширенного языка для создания высокопроизводительных вычислений. Не требуя никаких предварительных познаний в области параллельного программирования, авторы скрупулезно, шаг за шагом, раскрывают основы создания высокопроизводительных параллельных приложений, попутно поясняя важные архитектурные детали современного графического процессора – ускорителя вычислений.

Издание предназначено для инженеров, научных работников, программистов, в также будет полезно студентам вузов соответствующих специальностей. #математика #CUDA #GPU #графика #наука #Fortran #моделирование #физика #physics #инженерия #параллельные_вычисления

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📔 Сборник практических задач по математике [1971] Сорокин

Настоящий «Сборник практических задач по математике» ставит своей целью помочь учителям начальных классов (особенно учителям, начинающим работу) в подборе для каждого класса по каждой теме задач с практическим содержанием (помимо тех, какие имеются в принятых учебниках по математике) и дать полезные советы по методике решения таких задач.

Задачи, помещенные в настоящем «Сборнике», заставят ученика действовать: рисовать, чертить, вырезывать, измерять отрезки, находить площади, добывать необходимые для решения задач сведения, составлять планы, сметы, диаграммы, производить денежные расчеты и т.п. Обо всём этом и не только в книге Сборник практических задач по математике (П. И. Сорокин).
#математика #math #задачи #разборы_задач #алгебра #геометрия

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧠 Ученые Яндекса разработали и выложили в опенсорс Yambda — один из крупнейших в мире датасетов для рекомендательных систем на 5 миллиардов данных.

👨🏻‍💻 Датасет предназначен для развития рекомендательных систем и откроет новые возможности для научного сообщества и вузов. В основном, в них работают на упрощенных датасетах — в общий доступ редко попадают качественные и объемные данные. Поэтому ученые, исследователи и вузы часто оказываются на шаг позади, когда очередь доходит до исследований рекомендательных алгоритмов. Yambda позволит тестировать и улучшать их с помощью разнообразных обезличенных данных, собранных на основе Яндекс Музыки:

◾️ Датасет представлен в разных размерах: 5 млрд / 500 млн / 50 млн событий — чтобы разработчики и исследователи могли выбрать тот, который больше подходит их задачам и доступным вычислительным ресурсам.

◾️ Публикация актуальных агрегированных данных в открытом доступе даст возможность российской науке активнее развиваться в области рекомендательных систем и привлечет молодых специалистов, заинтересованных в машинном обучении.

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф

Книга профессора Ханс-Георга Шёпфа (ГДР) представляет собой краткое изложение истории развития теории теплового излучения. Автор очень интересно преподносит ее читателям: в первой части он излагает теорию теплового излучения с современной точки зрения, во вторую часть включает оригинальные работы основоположников теории теплового излучения - Кирхгофа. Больцмана. Вина, Рэлея, Планка. Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века — идеей квантования излучения.

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🪄 В математике, физике и искусстве узоры в стиле муар — это увеличенные интерференционные узоры, которые могут возникать в случае, когда частично непрозрачный линейный узор с прозрачными промежутками накладывается на другой подобный узор. Чтобы появился муаровый интерференционный узор, два узора должны быть не полностью идентичными, а смещёнными, повёрнутыми или иметь немного разную частоту.

Узоры в виде муара появляются во многих ситуациях. При печати напечатанный узор из точек может искажать изображение. В телевидении и цифровой фотографии узор на фотографируемом объекте может искажать форму световых датчиков, создавая нежелательные артефакты.

В физике его проявлением является интерференция волн, которую можно наблюдать в эксперименте с двумя щелями и феномене биений в акустике.

Муар-узоры часто являются артефактомизображений, созданных с помощью различных методов цифрового изображения и компьютерной графики, например, при сканированииполутонового изображения или трассировке лучей на клетчатой плоскости (последнее является частным случаем сглаживания из-за недостаточной дискретизации мелкого регулярного рисунка). Это может быть преодолено при отображении текстур с помощью mipmapping и анизотропной фильтрации.

⚙️ Смотреть ещё видео

#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки #графика #моделирование #волны

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🔊 Узоры стоячих волн — фигуры Хладни 〰️

В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.

Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».

Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics

CYMATICS׃ Science Vs Music — Nigel Stanford

Воздействие звуковых волн различных частот на соль

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

💾 Скачать книгу

Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.

Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.

Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⌨️ Программирование циклично, дамы и господа? Ваше мнение в комментариях...

👨🏻‍💻 Комментарий одного из наших подписчиков к посту с рассуждением о развитии IT:

... скорее всего тут имелось ввиду то не то чтобы сам код как таковой* а программное обеспечение в целом растёт по сложности, что провоцирует необходимость аппаратной развиваться чтобы адекватно выполнять этот код, и полученные новые вычислительные мощности в свою очередь запускают новую итерацию увеличения фичастости программ, а те в свою очередь опять подгоняют к развитию CPU.

* — не смотря на общераспространенное мнение что в целом программирование сейчас стало топорным: программисты стараются не писать реализацию сами, а прежде всего искать готовое, применять сверхвысокоуровневые и сверхабстрагированные конструкции (тратящие процессорное время) вместо того чтобы написать на Си, а сейчас так еще (что на самом деле возможно плохо для индустрии) - применяют для написания ИИ. И даже есть шутка что "раньше, когда компьютеры были большими, а программисты умными" - вот не смотря на все это и сам код в целом становится лучше, хорошеет, в том плане что тенденция в коде такова что он стремится быть максимально независящим и от аппаратуры и процессоров и от размера данных, а весь необходимый аппаратно-зависимый код стараются максимально минимизировать и изолировать в отельных маленьких модулях.

Яркий пример первые DOS игры которые от аппаратуры зависели на столько что стали не играбельны когда процессоры стали быстрее, тк "физика" в играх зависела не от времени а от частоты процессора.

Я описал более менее хороший сценарий, когда одно другое подгоняет и мы уже имеем возможность вооружившись необходимым минимумом абстракций писать код независящий от оборудования. Но дальше этим начинают злоупотреблять особенно читая мантры "время программиста дороже всего", "интересы бизнеса дороже всего", и в итоге получаются такие вещи как Electron, как Python, как приложения в браузере - печальная сторона современного IT, тот самый плохой код, тормозящий процессоры.


#IT #алгоритмы #computer_science #программирование #наука

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🎮 Муаровые узоры — узор, возникающий при наложении двух периодических сетчатых рисунков. Явление обусловлено тем, что повторяющиеся элементы двух рисунков следуют с немного разной частотой и то накладываются друг на друга, то образуют промежутки. Муаровый узор наблюдается при наложении друг на друга различных частей тюлевых занавесок. Термин «муаровый» происходит от названия ткани муар, при изготовлении которой использовалось данное явление. Муаровый узор возникает при цифровом фотографировании и сканировании сетчатых и других периодических изображений, если их период близок к расстоянию между светочувствительными элементами оборудования. Этот факт используется в одном из механизмов защиты денежных знаков от подделки: на купюры наносится волнообразный рисунок, который при сканировании может покрыться очень заметным узором, отличающим подделку от оригинала.

Физические основы возникновения муара при сканировании изображений: Сканирование, фактически, представляет собой модуляцию сигналов в узлах сетки сканера яркостью узлов типографского растра. В общем виде получается произведение двух модулированных синусоид (решёток) с различным периодом пространственных колебаний. Одна гармоника может иметь больший период, равный сумме периодов обеих решёток, что и вызывает муар. Вторая всегда имеет период, равный модулю разности периодов решёток и пропадает, потому что не может быть реализована при заданном разрешении сканирования. #физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧲 Алюминиевая банка в качестве ротора в бегущем магнитное поле ⚡️

Банка ведет себя также как и ротор, ведь в ней тоже могут наводиться индукционные токи, а затем взаимодействовать со внешним полем статора, заставляя её вращаться.

Одним из важнейших преимуществ многофазных систем является получение вращающегося магнитного поля с помощью неподвижных катушек, на чем основана работа двигателей переменного тока.

При пропускании по обмотке катушки синусоидального тока она создает магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Круговым вращающимся магнитным полем называется поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается в пространстве с постоянной угловой частотой.

Для создания кругового вращающегося поля необходимо выполнение двух условий:
▪️ 1.Оси катушек должны быть сдвинуты в пространстве друг относительно друга на определенный угол (для двухфазной системы – на 90°, для трехфазной – на 120°).
▪️ 2. Токи, питающие катушки, должны быть сдвинуты по фазе соответственно пространственному смещению катушек.

Здесь такой же принцип, как и асинхронного двигателя. Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.

В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.

В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.

В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Ω, принципиально меньшей скорости вращения поля. Отсюда название двигателя — асинхронный.

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📚 Подборка книг по математике — Рыжик В.И.

📗 25000 уроков математики [1993] Рыжик В.И.

Известный петербургский учитель и один из авторов учебников по геометрии делится опытом преподавания математики в школе. В книге рассматриваются вопросы построения единого математического курса, решения «хороших» задач, формирования творческой активности школьников.

📙 Задача для учителя математики. 7-11 классы [2017] Рыжик В.И.

Предлагаемая книга - труд известного педагога, основанный на огромном опыте работы в разных типах школ. В ней автор размышляет о проблемах школьного математического образования, показывает, какие профессиональные задачи решает учитель математики. Издание предназначено для учителей, методистов, а также для всех, кого интересуют проблемы образования.

📕 Стереометрия, Геометрия в пространстве [1998] Александров А.Д., Вернер А.Л., Рыжик В.И.

В учебном пособии содержится теоретический и практический материал по стереометрии за курс средней школы. В книге имеется около 100 задач с решениями и более 800 задач для самостоятельного решения. Приведены также задачи, которые использовались на вступительных экзаменах в различных ВУЗах. Пособие рассчитано на учащихся школ, абитуриентов, преподавателей.

📗 30 000 уроков математике [2003] В. И. Рыжик.

Известный петербургский учитель и один из авторов учебников по геометрии делится опытом преподавания математики в школе. В книге обсуждаются способы развития ученика, воспитательная роль математики, система задач по геометрии, составление дидактических материалов и тестов, использование компьютера в школьном курсе и др. Автор приводит конкретные методические решения некоторых из этих вопросов. В книге даются оригинальные задачи и методы решения.
Книга адресована учителям математики, методистам, а также всем, кого интересуют проблемы образования.

📔 Геометрия. 7-9 классы [1995] Александров А.Д., Вернер А.Л., Рыжик В.И.
Учебное пособие для 7-9 классов общеобразовательной школы.
📔 Геометрия. 6 класс [1984] Александров А.Д., Вернер А.Л., Рыжик В.И.
📔 Геометрия. 8 класс [1986] Александров А.Д., Вернер А.Л., Рыжик В.И.
📔 Геометрия. 8 - 9 классы [1991] Александров А.Д., Вернер А.Л., Рыжик В.И.
📔 Геометрия. 9 - 10 классы [1991] Александров А.Д., Вернер А.Л., Рыжик В.И.
📔 Геометрия. 10-11 классы [1992] Александров А.Д., Вернер А.Л., Рыжик В.И.


💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

#️⃣ Обычный поиск VS Квантовый поиск

В контексте квантовых вычислений квантовый поиск по графу — это квантовый алгоритм для поиска помеченного узла в графе. Концепция квантового блуждания основана на классических случайных блужданиях, в которых участник случайным образом перемещается по графу или решётке. В классическом случайном блуждании положение участника можно описать с помощью распределения вероятностей по различным узлам графа. В квантовом блуждании, с другой стороны, участник представлен квантовым состоянием, которое может находиться в суперпозиции нескольких местоположений одновременно.

Поисковые алгоритмы, основанные на квантовых прогулках, могут найти применение в различных областях, включая оптимизацию, машинное обучение, криптографию и сетевой анализ. Эффективность и вероятность успеха квантового поиска сильно зависят от структуры пространства поиска. В целом, алгоритмы квантового поиска обеспечивают асимптотическое квадратичное ускорение, аналогичное алгоритму Гровера. Одна из первых работ по применению квантового блуждания к задачам поиска была предложена Нилом Шенви, Джулией Кемпе и К. Биргиттой Уэйли. #математика #math #геометрия #графика #наука #алгоритмы #дискретная_математика #графы #задачи #программирование

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Машинное обучение не начинается с нейросетей. Оно начинается с линейной алгебры. С вероятностных моделей. С тензоров, временных рядов и байесовских подходов, которые сначала не работают «на практике», зато потом внезапно объясняют всё.

Если вы когда-нибудь читали курс «Математические основы ML», вели семинары по тензорным вычислениям или строили с нуля программу, где студенты наконец понимают, зачем им теория вероятностей, есть повод остановиться на минуту.

Открылся приём заявок на Yandex ML Prize 2025, премию для преподавателей и руководителей ML-программ. В одной из номинаций те, кто преподаёт математику как основу для машинного обучения и держит фундамент.

Победители получат денежные призы и гранты на Yandex Cloud: для запуска курсов, проведения исследований, хакатонов, студенческих проектов. Заявки принимают до 22 июня.

Если вы из таких, смело подавайтесь. Если знаете таких – расскажите им.

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📕 N-угольники [1973] Бахман, Шмидт

В этой книге на вполне элементарном материале, начинающемся с простейших геометрических истин (середины сторон произвольного четырехугольника являются вершинами параллелограмма и т. д.), развита весьма изящная теория, устанавливающая зачастую совершенно неожиданные связи между геометрией и важными концепциями и понятиями современной алгебры. Большое достоинство книги — сопровождающие изложение задачи, которые позволяют читателю все время контролировать степень овладения материалом.

Книга рассчитана на любителей математики самых разных категорий, начиная от старшеклассников, интересующихся этой наукой (например, учащихся школ с математической специализацией).

#математика #math #геометрия #графика #наука #дискретная_математика #графы #физика #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📢 Регистрация на Летнюю школу имени И. Е. Тамма продлена до 31 мая!

Что тебя ждёт:

▪️обсуждение последних научных открытий и достижений;
▪️лекции от ведущих учёных;
▪️участие в образовательных интенсивах и лабораторных практикумах с использованием современного оборудования.

Если ты студент выпускного курса технической специальности и готов окунуться в мир настоящей науки, не упусти этот шанс! Переходи по ссылке и регистрируйся:

🗓 Успей зарегистрироваться до 31 мая: https://contest.sarov.msu.ru/?utm_source=tg&utm_campaign=posev

Реклама. Частное учреждение «Центр коммуникаций». ИНН 9705152344. erid: 2VtzquzkLnh

Читать полностью…

Physics.Math.Code

📘 CUDA Fortran for Scientists and Engineers [2011] Greg Ruetsch, Massimiliano Fatica

📗 CUDA Fortran для инженеров и научных работников [2014] Грегори Рутш, Массимилиано Фатика


💾 Скачать книгу

В этом документе используются компиляторы PGI 11.x, которые можно получить по адресу pgroup.com. Хотя примеры могут быть скомпилированы и запущены в любой поддерживаемой операционной системе в различных средах разработки, примеры в этом документе скомпилированы из командной строки, как это было бы сделано в Linux или Mac OS X.

#математика #CUDA #GPU #графика #наука #Fortran #моделирование #физика #physics #инженерия #параллельные_вычисления

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📔 Сборник практических задач по математике [1971] Сорокин

💾 Скачать книгу

👩‍💻 «Математика — это язык, на котором написана книга природы» (Г. Галилей).


#математика #math #задачи #разборы_задач #алгебра #геометрия

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

👩‍💻Самая большая в мире вакуумная камера. В этой камере проводили эксперимент, который подтвердил теорию Галилея относительно ускорения свободного падения. Суть опыта: с одинаковой высоты в один момент времени отпустили шар для боулинга и несколько перьев. В замедленной съёмке показали, что оба объекта ускоряются одинаково и достигают плоскости Земли одновременно. Это произошло потому, что на них не действует сопротивление воздуха, так как объекты находились в вакууме.

Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.

Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф

💾 Скачать книгу

Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века - идеей квантования излучения.

📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]

📚 Курс общей физики в 5 томах [2021] Савельев И.В.

📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск

📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🖥 Юрий Рыбников. Наука и образование как средство зомбирования жителей Земли

Гость — Рыбников Юрий Степанович, «учёный», предложивший периодическую систему электроатомов Равноправной Устойчивой Симметрии (РУС) землян, методику построения электроструктур электроатомов, соединившую физику, химию, электричество, счёт РУСов (математику) в единую систему Знаний. Полностью отрицает современную теорию строения атома и множество других современных научных представлений.

Гениальная сдержанность ведущего.

#электродинамика #квантоваяфизика #физика #наука #physics #колебания #science #волны #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.

Обработка нечёткой информации применяется в различных областях, например:

▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.

#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🔥Мартенсит — это очень твёрдая форма кристаллической структуры стали. Он назван в честь немецкого металлурга Адольфа Мартенса. По аналогии этот термин может также относиться к любой кристаллической структуре, которая образуется в результате бездиффузионного превращения.

Мартенсит образуется в углеродистых сталях при быстром охлаждении (закалке) аустенитной формы железа с такой высокой скоростью, что атомы углерода не успевают диффундировать из кристаллической структуры в достаточном количестве, чтобы образовать цементит (Fe₃C). Аустенит — это гамма-фаза железа (γ-Fe), твёрдый раствор железа и легирующих элементов. В результате закалки гранецентрированный кубический аустенит превращается в сильно напряжённую объёмно-центрированную тетрагональную форму, называемую мартенситом, которая перенасыщенауглеродом. Возникающие в результате деформации сдвига создают большое количество дислокаций, которые являются основным механизмом упрочнения стали. Наибольшая твёрдость перлитной стали составляет 400 единиц Бринелля, в то время как твёрдость мартенсита может достигать 700 единиц Бринелля.

Бездеффузионные превращения — это превращения, не требующие перераспределения компонентов. При таком превращении скорость роста кристалла определяется скоростью перемещения границы раздела фаз. Бездеффузионные превращения происходят в чистых металлах, в стехиометрических химических соединениях и других материалах.

[diffusionless transformation] — фазовое превращение при котором атомы упорядоченно кооперативно перемещаются (сдвигаются) на растояния меньше межатомных без обмена атомов местами так, что соседи любого атома в исходной фазе остаются его соседями в новой мартенситной фазе. Часто бездиффузионное превращение называют сдвиговым превращением. К бездиффузионным превращениям относятся мартенситные превращения.

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🎲 Шриниваса Рамануджан родился ровно 138 лет назад

Г.Х. Харди однажды оценил математиков по шкале от 1 до 100 на предмет чистого таланта. Харди поставил себе 25 баллов, его коллега Литтлвуд — 30, Гилберт — 80, а Рамануджан — высший балл — 100.

📝 Бесконечно повторяющиеся радикалы Рамануджана

👳‍♀️ Рамануджан — гений, опередивший свое время (фильм)

#математика #факты #math #science #алгебра #наука

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

❌ Без этого не сдать ЕГЭ на 90+

Речь идет о формулах, необходимых для решения задач.

Как раз сейчас на канале «Профиматики» в закрепе ты сможешь найти файл со всеми формулами для ЕГЭ 2025 👉 https://th.link/X07qW

И не забудь добавить канал себе!

Ведь «Профиматика» – школа подготовки к ЕГЭ по профильной математике, которая каждый месяц проводит бесплатные интенсивы, ведет открытые стримы с разбором задач и выкладывает методички в общий доступ.

А канал ведут опытные преподаватели и эксперты ЕГЭ:

✔️ Обучили 2 000 выпускников, из них — больше 300 человек сдали ЕГЭ на 90+ баллов!
✔️ В 2024 году 17 учеников стали стобалльниками.
✔️ А каждый третий набрал 90+ 😎

Поэтому скорее залетай, чтобы узнать, как сдать ЕГЭ по математике на 90+ ⬇️

https://th.link/X07qW

Читать полностью…

Physics.Math.Code

👩‍💻 Всем программистам посвящается!

Вот 17 авторских обучающих IT каналов по самым востребованным областям программирования:

Выбирай своё направление:

👩‍💻 Python — t.me/python_ready
🤔 Хакинг & ИБ — t.me/hacking_ready
🖥 Базы Данных & SQL — t.me/sql_ready
👩‍💻 Нейросетиt.me/neuro_ready
👩‍💻 C/C++ — /channel/cpp_ready
👩‍💻 C# & Unity — t.me/csharp_ready
👩‍💻 Linux — t.me/linux_ready
📖 IT Книги — t.me/books_ready
👩‍💻 Frontend — t.me/frontend_ready
📱 JavaScript — t.me/javascript_ready
👩‍💻 Backend — t.me/backend_ready
📱 GitHub — t.me/github_ready
👩‍💻 Java — t.me/java_ready
👩‍💻 Всё IT — t.me/it_ready
👩‍💻 Bash & Shell — t.me/bash_ready
🖼️ DevOpst.me/devops_ready
🖥 Design — t.me/design_ready

📌 Гайды, шпаргалки, задачи, ресурсы и фишки для каждого языка программирования!

Читать полностью…

Physics.Math.Code

📚 Подборка книг по математике — Рыжик В.И.

💾 Скачать книги

Валерий Идельевич Рыжик (род. 25 августа 1937, Ленинград) — советский и российский преподаватель математики, автор ряда учебников и методических пособий. Народный учитель Российской Федерации (2014). В 1976 году защитил диссертацию «Использование аксиоматики евклидова пространства для изучения геометрии в школе». В 1980—82 работал старшим научным сотрудником в ЛГПИ. В 1983 году, продолжая преподавать в Педагогическом институте, перешёл из 239-й в 184-ю школу Калининского района. В 1988 году перешёл в новую школу при Физико-техническом институте имени А. Ф. Иоффе РАН (ныне — Лицей «Физико-техническая школа» имени Ж. И. Алфёрова), где преподаёт по настоящее время.

Если вы собираетесь изучать математику, вы должны научиться чувствовать себя комфортно, когда чего-то не понимаете. — Джереми Кун


💡 Physics.Math.Code // @physics_lib

Читать полностью…
Subscribe to a channel