📚Python библиотека admin - @haarrp @ai_machinelearning_big_data - машинное обучение @programming_books_it - бесплатные it книги @pythonl - 🐍 @ArtificialIntelligencedl - AI @datascienceiot - ml РКН: clck.ru/3FmsTi
Perfect Roadmap To Learn Data Science In 2024
📖 Book
@pythonlbooks
WIS Python programming course started in 2024.04
📖 Github
@pythonlbooks
🖥 Hands-On Mathematical Optimization with Python
📖 Book
@pythonlbooks
Artificial Intelligence for Beginners - A Curriculum
📚 Course
@pythonlbooks
Data Structures and Information Retrieval in Python
📓 Книга
@datascienceiot
Конспект лекции Гонконгского университета прикладной линейной алгебры и дифференциальных уравнений
📌 Лекции
@data_math
C O M P U T E R V I S I O N : F O U N D AT I O N S A N D A P P L I C AT I O N S
🖥 book
@pythonlbooks
Python с нуля: от новичка до собственных игр и программ
🖥 book
@pythonlbooks
Problem Solving with Algorithms and Data Structures
🔗 Book
@pythonlbooks
📖 A Data-Centric Introduction to Computing
Огромная бесплатная книга: Введение в науку о данных: основы вычислений!
🔗 Читать: *клик*
@pythonlbooks
Представьте себе мир, где каждый разработчик может создать умного помощника, способного анализировать тексты и делать общение в интернете более дружелюбным. Звучит как фантастика? Но это реальность, и вы можете стать ее частью!
Приглашаем на двухдневный бесплатный онлайн-воркшоп от Эльбрус Буткемп «Создаем чат-бота для доброго комьюнити» 23-24 октября, с 19:00 до 20:30 по МСК
На воркшопе вы погрузитесь в мир языковых моделей, попрактикуетесь с интеграцией моделей в код и создадите реального Telegram-бота для анализа сообщений. Спикеры поделятся своим опытом и покажут, как применять сложные концепции на практике.
Места ограничены — регистрируйтесь прямо сейчас по ссылке: https://clc.to/QLsAmg
Deep Learning and Computational Physics - Lecture Notes, University of South California
📓 book
@datascienceiot
Beginning Ethical Hacking with Python
📓 Book
@pythonlbooks
Скажите рутине STOP✋
👉 Ускорьте рабочие процессы и освободите время для более интересных дел — с помощью курса Слёрма «Python для инженеров».
Это обучение, заточенное на инженеров — в нём нет ничего лишнего, только то, что необходимо именно вам.
На курсе вы научитесь:
🔹 писать эффективный и поддерживаемый код;
🔹 писать Kubernetes-операторы и модули для Ansible;
🔹 создавать, использовать и тестировать свои API;
🔹 взаимодействовать с инструментами CI/CD, CVS и DevOps системами.
Для того, чтобы вы смогли «пощупать» курс изнутри, даём бесплатный пробный доступ на 3 дня.
А при покупке даём в подарок мини-курс «Python, Чат-боты и DevOps» и видеокурс «Gitlab CI/CD».
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: /channel/gamedev
Haskell: t.me/haskell_tg
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: /channel/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: /channel/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: /channel/addlist/BkskQciUW_FhNjEy
📌Монография "Reinforcement Learning: An Overview"
Исчерпывающий материал по обучению с подкреплением (Reinforcement Learning, RL), в котором подробно описываются различные модели среды, задачи оптимизации, исследуется определение компромисса между теорией и практической эксплуатаций RL.
Отдельно рассматриваются смежные темы: распределенное RL, иерархическое RL, обучение вне политики и VLM.
В работе представлен обзор алгоритмов RL:
🟢SARSA;
🟢Q-learning;
🟢REINFORCE;
🟢A2C;
🟢TRPO/PPO;
🟢DDPG;
🟢Soft actor-critic;
🟢MBRL.
Автор - Kevin Murphy, главный научный сотрудник и руководитель команды из 28 ресечеров и инженеров в Google Deepmind. Группа работает над генеративными моделями (диффузия и LLM), RL, робототехникой, байесовским выводом и другими темами.
Кевин опубликовал более 140 статей на рецензируемых конференциях и в журналах, а также 3 учебника по ML, опубликованных в 2012, 2022 и 2023 годах издательством MIT Press. (Книга 2012 года была удостоена премии ДеГроота как лучшая книга в области статистической науки).
🔜 Монография опубликована в открытом доступе 9 декабря 2024 года.
@ai_machinelearning_big_data
#AI #ML #Book #RL
📌Книга "Обучение с подкреплением: Основы"
Хороших книг по обучению с подкреплением (Reinforcement Learning, RL) уже выпущено достаточно, однако есть пробел между продвинутыми учебниками, в которых основное внимание уделяется одному или нескольким аспектам, и более общими книгами, в которых предпочтение отдается удобочитаемости, а не сложности.
Авторы книги, люди с опытом работы в CS и инжиниринга, подают тему RL в строгом и академическом стиле. Книга основана на конспектах лекций для углубленного курса бакалавриата, который преподается авторами в Тель-Авивском университете.
К этой книге дополнительно идет брошюра с упражнениями и экзаменационными вопросами, которые помогут освоить материал книги на практике. Эти упражнения разрабатывались на протяжении нескольких лет.
Математическая модель книги - Марковский процесс принятия решений (Markov Decision Process, MDP). Основное внимание уделяется: последовательному принятию решений, выбору действий, долгосрочному эффекту от этих действий и разница между немедленным вознаграждением и долгосрочной выгодой.
Тематически книга состоит из двух частей – "Планирование" и "Обучение".
▶️ Раздел "Планирование" - основы принятия оптимальных решений в условиях неопределенности в соответствии с MDP.
🟢Глава 2. Обоснование модели MDP и ее связь с другими моделями.
🟢Глава 3. Основные алгоритмические идеи в детерминированной постановке.
🟢Глава 4. Цепи Маркова, на которых основана MDP.
🟢Глава 5. Модель MDP с конечным горизонтом и фундаментальный подход к динамическому программированию.
🟢Глава 6. Дисконтированная настройка с бесконечным горизонтом.
🟢Глава 7. Эпизодическая настройка.
🟢Глава 8. Альтернативный подход к решению MDP с использованием формулировки линейного программирования.
▶️ Раздел "Обучение" - принятие решений, когда модель MDP неизвестна заранее.
🟠Глава 9. Описание и мотивация модели обучения и ее связь с альтернативами при принятии решений.
🟠Глава 10. Подход, основанный на моделях, при котором агент явно изучает модель MDP на основе своего опыта и использует ее для принятия решений по планированию.
🟠Глава 11. Альтернативный подход без использования моделей, при котором решения принимаются без явного построения модели.
🟠Глава 12. Изучение приблизительно оптимальных решений крупных задач с использованием аппроксимации функции стоимости.
🟠Глава 13 Решение крупных задач с использованием методов градиентной политики.
🟠Глава 14. Особый случай на примере игровых автоматов, как MDP с единым состоянием и неизвестными наградами, и онлайн-характер принятия решений.
🟡Сайт учебника
🟡Читать
@ai_machinelearning_big_data
#AI #ML #RL #MDP #Book
👩💻 Pythonic Data Structures and Algorithms: algorithms
🖥 Github
@pythonlbooks
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/datascienceiot
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: /channel/gamedev
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: /channel/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: /channel/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: /channel/addlist/BkskQciUW_FhNjEy
👩💻 Python Notes for Professionals book
🔗 Book
@pythonlbooks
🖥 Шпаргалка-гайд по работе с Python и PostgreSQL.
Шпаргалка
@pythonlbooks
🖥 Python БОЛЬШАЯ КНИГА ПРИМЕРОВ
📚 Книга
@pythonlbooks - книги Python
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/python_job_interview
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: /channel/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: /channel/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: /channel/addlist/BkskQciUW_FhNjEy
Необязательно искать удобный планировщик задач: его можно создать самостоятельно! А заодно — узнать, насколько вам интересно программирование.
Бесплатный курс «Основы Python: создаём Telegram-бота» — надёжный вариант, чтобы самоопределиться в профессии. Вы выясните, как устроены процессы разработки, создадите планировщик задач и бота-помощника и поймёте, подходит ли вам этот язык.
А ещё вы узнаете, как развиваться в профессии, и получите бонус для продолжения обучения на курсе-профессии «Python-разработчик».
Доступ в чат с экспертами и однокурсниками для получения ответов на вопросы и помощи в практике, а также сертификат Нетологии после прохождения курса прилагаются → записывайтесь на курс по ссылке
Реклама. ООО "Нетология". Erid 2VSb5wxMuFv
Python Practical Programming
📚 Book
@pythonlbooks