VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i
📚 Подборка: 21 книга по дискретной математике и алгоритмам. Автор: Шень А. Х.
💾 Скачать книги
Александр Ханиевич Шень — российский и французский математик, учёный в области информатики, педагог, популяризатор науки.
Диссертацию кандидата физико-математических наук по теме «Алгоритмические варианты понятия энтропии» защитил в 1985 году под руководством В. А. Успенского. Основные труды в области колмогоровской сложности, информатики. Опубликовал также пособия по преподаванию математики, популярные книги по математике, программированию и астрономии для учащихся, ряд учебников.
#алгоритмы #программирование #математика #дискретная_математика #math #mathematics #maths #алгебра
💡 Physics.Math.Code // @physics_lib
🔥 Индукционный нагрев — метод бесконтактного нагрева электропроводящих материалов токами высокой частоты и большой величины.
Открытие электромагнитной индукции в 1831 году принадлежит Майклу Фарадею. При движении проводника в поле магнита в нём наводится ЭДС, так же как при движении магнита, силовые линии которого пересекают проводящий контур. Ток в контуре называется индукционным. Он же вихревой, он же ток Фуко. Именно эти токи разогревают материал, согласно закону Джоуля-Ленца. На законе электромагнитной индукции основаны изобретения множества устройств, в том числе определяющих — генераторов и трансформаторов, вырабатывающих и распределяющих электрическую энергию, что является фундаментальной основой всей электротехнической промышленности.
В 1841 году Джеймс Джоуль (и независимо от него Эмиль Ленц) сформулировал количественную оценку теплового действия электрического тока: «Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля» (закон Джоуля — Ленца). Тепловое действие индуцированного тока породило поиски устройств бесконтактного нагрева металлов. Первые опыты по нагреву стали с использованием индукционного тока были сделаны Е. Колби в США.
Первая успешно работающая т. н. канальная индукционная печь для плавки стали была построена в 1900 году на фирме «Benedicks Bultfabrik» в городе Gysing в Швеции.
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
🔍 Все аксолотли готовятся к первой в России школьной олимпиаде по промышленной разработке PROD, которую проводят Центральный университет, ВШЭ и Т-Банк.
В Москвариуме для главного участника организовали рабочее место. #science #наука #образование #разработка #физика
💡 Physics.Math.Code // @physics_lib
📚 Подборка книг по математике — Киселёв А. П.
💾 Скачать книги
📝 Киселёв Андрей Петрович — русский и советский педагог, «законодатель» школьной математики. Он родился 12 декабря 1852 года в городе Мценске Орловской губернии в бедной мещанской семье, учился один год в приходском училище, а затем три года в уездном училище. По окончании училища Андрей Киселёв поехал в Орёл, чтобы поступить в гимназию. В Орле его приютил дальний родственник — состоятельный купец, благодаря которому Киселёв и поступил в гимназию. За обед и угол Киселёв в течение шести лет, сам обучаясь в гимназии, учил шестерых детей своего родственника. Благодаря упорству и целеустремленности, обладая хорошими способностями, Киселёв стал первым учеником гимназии, которую окончил в 1871 году с золотой медалью. #математика #подборка_книг #геометрия #math #алгебра #maths
Для тех, кто захочет задонать на кофе☕️:
ВТБ: +79616572047 (СБП)
Сбер: +79026552832 (СБП)
ЮMoney: 410012169999048
🌕 Цвет звезды в зависимости от её температуры 🪐
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
⭕️ Точки пересечения кругов на воде движутся по гиперболе
Кто сможет доказать данный факт математически?
#математика #math #maths #mathematics #геометрия #опыты #физика #physics
💡 Physics.Math.Code // @physics_lib
⚙️ Обычный бумажный диск может разрезать дерево, металл и другие более твердые [в статике] предметы
Обычная бумага приобретает невероятно высокие режущие свойства, если придать вырезанному из нее диску большую скорость вращения. Бумагу взяли самую обычную, плотность 110 г/м. Из нее вырезали диск под насадку для шуруповерта. Бумажный диск гнется, он мягкий — как и положено всякой бумаге. Высокая скорость оборотов превращает бумагу в прекрасный режущий инструмент. 👨🏻💻 Смотреть ещё такой опыт
#опыты #эксперименты #физика #physics #наука #science #видеоуроки
💡 Physics.Math.Code // @physics_lib
🟢 Изобретение, которое удерживает баланс в любом положение шарика
В физике равновесием называется состояние неподвижности, покоя, в котором пребывает какое-либо тело под воздействием противоположно направленных сил. Ещё равновесием называют устойчивое положение человеческого тела. Равновесие – это такое состояние природы, организма, общества, которое характеризуется тем, что одни силы, факторы, компенсируются, уравновешиваются другими, и это приводит кого-либо или что-либо в состояние относительного покоя, позволяет нормально функционировать. Равновесие может быть различным в зависимости от расположения тела по отношению к окружающим телам. Существует три вида равновесия: устойчивое, неустойчивое, безразличное. С этим подробно можно познакомиться в разделе механики, называемым статикой, – наукой о равновесии тел.
Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза, которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.
В своём труде "О равновесии плоских тел" ещё Архимед, древнегреческий математик, физик и инженер, употреблял понятие центра тяжести. Видимо, оно впервые было введено неизвестным предшественником Архимеда или же им самим, но в более ранней, не дошедшей до нас работе. Прошло 17 веков, и Леонардо да Винчи сумел найти центр тяжести тетраэдра. Он же, размышляя об устойчивости итальянских "падающих" башен, в том числе - Пизанской, пришёл к "теореме об опорном многоугольнике".
Что же такое центр тяжести? Сила тяжести – это сила, с которой Земля притягивает к себе любое тело. Центр тяжести тела – точка приложения силы тяжести. В научной литературе мы нашли более полное определение. Точку приложения равнодействующей сил тяжести, действующих на отдельные части тела называют центром тяжести тела.
Как можно найти центр тяжести в различных телах? Если тело однородно и имеет правильную форму, то всё просто. У однородных тел правильной формы центр тяжести совпадает с его геометрическим центром. Так, например, центр тяжести шара лежит в его геометрическом центре, у прямоугольного параллелепипеда — в точке пересечения диагоналей, а у треугольника — на пересечении его медиан. В некоторых случаях центр тяжести может находиться и вне тела. Например, у кольца он лежит на пересечении его диаметров.
💡 Physics.Math.Code // @physics_lib
🌈 Наглядно об изменении цвета предметов при погружении на глубину — обратите внимание на красный цвет, который пропадает быстрее всех. Опыт показывает, что глубоководным рыбам выгодно иметь красную окраску, ведь так они будут казаться менее заметными для хищников и добычи. Удивительная адаптация и естественный камуфляж. По той же причине самые глубоководные водоросли выглядят красными: они не приспособлены поглощать красный свет, которого на глубине вовсе нет.
Красный цвет имеет максимальную длину волны из видимого спектра и, следовательно, несёт наименьшее количество энергии. По мере увеличения глубины поглощаются красные, оранжевые, затем жёлтые, а иногда и зелёные волны, поэтому оставшийся видимый свет состоит из синего и фиолетового цветов с более короткой длиной волны. Вот почему океан на подводных съёмках мы видим в оттенках синего. А на глубину порядка двухсот метров (конкретика сильно зависит от условий) уже не проникает никакой видимый свет.
Вода представляет собой синий светофильтр, тем более густой, чем толще слой воды. Все краски с увеличением глубины меняются. Так, например, красный цвет на глубине около 5 м становится бордовым, затем с погружением постепенно превращается в коричневый, а за пределами 12 м красные цвета все более превращаются в темно-зеленые. На глубине 20-30 м все цвета сизо-серые, они однотонны и тусклы.
Чем короче длина волны у света, тем энергичнее фотоны, и наоборот. Отличным примером служит рентгеновское излучение. Оно находится вне видимо спектра, так как длина его волны чрезвычайно мала, что и позволяет фотонами проходить насквозь некоторые предметы. Аналогично, чем больше длина волны, тем меньшей способностью к сквозному прохождению сквозь предметы обладают фотоны. Как уже упоминалось выше, у красного света самая большая длина волны из видимого спектра, поэтому красный свет поглощается лучше остальных. Другими словами, красный свет просто рассеивается в воде.
Если красный предмет постепенно погружать под воду, его цвет будет меняться: на небольшой глубине это незаметно; приблизительно на глубине 5 метров предмет станет бордовым; затем с увеличением глубины он сперва начнет казаться коричневым, потом зелёным, а на глубине около 30 метров станет чёрным. Это связано с тем, что цвет какого-либо тела определяется цветом, отражаемым этим телом. Например, красный предмет поглощает все цвета, кроме красного. Чем глубже погружается предмет, тем меньше света на него падает и тем меньше он отражает; а значит, на большой глубине, любой цвет будет казаться чёрным. #оптика #физика #science #physics #волны #квантовая_физика #опыты #эксперименты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
⭕️ Какая площадь заключена между тремя окружностями?
#math #математика #геометрия #maths #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
📱 Чтобы преуспеть в век ускоряющегося AI вам не стоит тратить время на техноблоги, нужно копать глубже: научные статьи, пейперы и технические отчёты из первых рук.
Так вот, @ai_newz — это не очередной ИИ технобложек, которых в телеге развелось в последнее время. На канале Артёма, Staff Research Scientist-а в Meta, можно почитать пейперы из первых рук Meta GenAI, там скоро выйдет разбор Movie Gen. Ну и кроме того, обзоры других пейперов и важных новостей.
Вот, например:
▪️ Артём рассказал о новой модели Imagine Flash для риалтайм генерации картинок, которую он и его команда обучили — был ещё один громкий релиз от Meta.
▪️ Пост про модель для генерации стикеров, которую Артём лично оптимизировал. Моделька уже крутится в Инсте и WhatsApp в проде.
▪️ Актуальный список книг для изучения ML в 2024.
▪️ Статья Артёма об ускорении диффузии с помощью кеширования, без потери качества, конечно же.
▪️ Лонгрид про парижский стартап Mistral и знакомство Артёма с фаундером.
▪️ Пост про грейды в бигтехе [ч1, ч2] и компенсации. Все же в курсе, что сеньор это еще не все?:) Ну и туда же запись стрима про собеседования в БигТех.
Такие люди как Артем, двигают SOTA и делают наступление AGI все ближе. Рекомендую подписаться, чтобы не потерять себя, когда наступит AGI: @ai_newz.
#AI #искусственный_интеллект #машинное_обучение #нейронные_сети
💡 Physics.Math.Code // @physics_lib
♾️ Задача о перемещении дивана
Задача о перемещении дивана была сформулирована канадским математиком австрийского происхождения Мозером (англ.) в 1966 году.
Задача сводится к двумерной идеализации житейской проблемы о перемещении мебели. В двумерном пространстве определите жёсткое тело наибольшей площади А, которое может быть перемещено в Г-образном «коридоре», образованном «тоннелями» шириной в единицу измерения, сходящимися под прямым углом. Полученное значение А принято называть константой дивана (в альтернативных формулировках той же самой задачи этот предмет является идеализацией стола, или же баржи или корабля в Г-образном канале).
Те, кому приходилось передвигать мебель в своей квартире или хотя бы присутствовать при этом, наверняка сталкивались с весьма традиционной проблемой: шкаф или диван, которые должны быть передвинуты в другую комнату, никак не могут «протиснуться» в нужное место по «извилистому» коридору. Можно предположить, что знаменитая задача о перемещении дивана, сформулированная в 1966 году, родилась в голове канадского математика Мозера именно в тот момент, когда он пытался переставить мебель.
Представьте, что вы имеете коридор, который изгибается в форме буквы Г (он образован двумя небольшими коридорчиками, образующими прямой угол), через который необходимо «протащить» диван или стол (выражаясь сухим языком математики — «жесткое тело наибольшей площади А» — константы дивана). В некоторых подобных задачах через канал такого же вида необходимо провести корабль или баржу. Каким же образом необходимо поступить в данном случае? [Ответ]
#математика #геометрия #численные_методы #math #article
💡 Physics.Math.Code // @physics_lib
📕 Компьютерное моделирование физических систем [2011] Булавин Л.A., Выгорницкий H.B., Лебовка Н.И
В учебном пособии изложен материал по применению методов компьютерного моделирования для исследования физических систем. В каждой главе рассмотрена самостоятельная физическая задача, в ней содержится введение в суть проблемы, изложены рецепты и алгоритмы ее решения, дано описание рабочей программы на языке Фортран 90, а также приведены примеры ее использования. Рассмотренные задачи относятся к областям статистической физики и физики конденсированных систем, физики фракталов, перколяционных и хаотических явлений. Для более глубокого усвоения материала, к каждой главе прилагаются задачи и упражнения для самостоятельной работы.
Для студентов, аспирантов и преподавателей физических, физико-химических специальностей, а также научных сотрудников.
📝 Компьютерное моделирование дает возможность:
▪️ расширить круг исследовательских объектов — становится возможным изучать не повторяющиеся явления, явления прошлого и будущего, объекты, которые не воспроизводятся в реальных условиях;
▪️ визуализировать объекты любой природы, в том числе и абстрактные;
▪️ исследовать явления и процессы в динамике их развертывания;
▪️ управлять временем (ускорять, замедлять и т.д);
▪️ совершать многоразовые испытания модели, каждый раз возвращая её в первичное состояние;
▪️ получать разные характеристики объекта в числовом или графическом виде;
▪️ находить оптимальную конструкцию объекта, не изготовляя его пробных экземпляров;
▪️ проводить эксперименты без риска негативных последствий для здоровья человека или окружающей среды.
#моделирование #программирование #физика #математика #physics #math
💡 Physics.Math.Code // @physics_lib
🖥 Как работать с физикой на Python. Доска Гальтона [ Pygame + Pymunk ]
В этом ролике вы узнаете основы работы с физическими явлениями (гравитация, столкновения, сила упругости и трения) на примере физического движка Pynunk.
Проведем очень интересный опыт, смоделируем доску Гальтона (Galton board) при помощи языка программирования Python (Пайтон, Питон). Обработкой всей физики будет заниматься движок Pymunk, а отрисовку объектов воплотим через библиотеку Pygame.
Чтобы установить Pymunk, введите в терминале: "pip install pymunk
"
Чтобы установить Pygame, введите в терминале: "pip install pygame
"
📝 Код из видео на Github
https://www.pymunk.org/en/latest/index.html
https://devdocs.io/pygame/
https://pygame-docs.website.yandexcloud.net/
#моделирование #python #физика #программирование
💡 Physics.Math.Code // @physics_lib
🟢 Мяч для гольфа во время удара о стальную пластину на скорости 150 миль в час при съемке 70 000 кадров в секунду
150 миль/час = 67 м/c
m = 45,93 г = 0.04593 кг
.Ek = ½ · m · v² = 103 Дж.
🧲⚡️ Как работают трансформаторы?
Трансформатор — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) без изменения частоты. Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.
В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества. 29 августа 1831 года Фарадей описал в своём дневнике опыт, в ходе которого он намотал на железное кольцо диаметром 15 см и толщиной 2 см два медных провода длиной 15 и 18 см. При подключении к зажимам одной обмотки батареи гальванических элементов начинал отклоняться гальванометр на зажимах другой обмотки. Так как Фарадей работал с постоянным током, при достижении в первичной обмотке своего максимального значения ток во вторичной обмотке исчезал, и для возобновления эффекта трансформации требовалось отключить и снова подключить батарею к первичной обмотке.
Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах М. Фарадея и Д. Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.
В 1848 году немецкий механик Г. Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.
Александр Григорьевич Столетов (профессор Московского университета) сделал первые шаги в этом направлении. Он обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1872 год).
Большую роль для повышения надёжности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д. Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надёжность изоляции обмоток.
Самый крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются улучшенные магнитные свойства вдоль направления прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
➰ Красота параметрических кривых
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
📚 Подборка книг по математике — Киселёв А. П.
📘 Элементарная геометрия [1980] Киселёв А.П.
Настоящая книга печатается без изменений с 12-го издания (1931 г.) учебника геометрии, по которому долгое время велось преподавание в школе. Благодаря высокому педагогическому мастерству, с которым написана книга, она не потеряла своей значимости и в настоящее время.
📗 Систематический курс арифметики [1912 / 2002] Киселёв А.П.
Настоящая книга является репринтным изданием учебника 1912 года «Систематический курс арифметики» А.П. Киселева, который представляет единое систематизированное изложение курса арифметики для старших классов. Книга предназначена для широкого круга читателей: учителей, студентов, научных работников.
📕 Геометрия (планиметрия, стереометрия) [2004] А.П Киселёв
Классический учебник геометрии, по которому учились десятки и сотни тысяч школьников в нашей стране. Первое издание книги увидело свет в 1892 году. Этот учебник просуществовал без всяких изменений в качестве общепринятого до 1956 г., когда школьная программа по математике претерпела изменения.
Доп. информация: По-моему, это лучший учебник по геометрии для школьников. Из известных мне по крайней мере. Учебники Колмогорова и Погорелова излишне формализованы.
📔 Элементарная алгебра [1906] Киселёв А.П.
Легендарный учебник по элементарной алгебре, без печальных изменений советского времени. Учебный материал подается в полном объеме и доступном виде для самостоятельного изучения. Учебник по элементарной алгебре авторства Киселёва Андрея Петровича — главное учебное пособие дореволюционной России.
📙 Элементы алгебры и анализа [1930] [2 части] Киселёв А.П.
Учебники, написанные выдающимся педагогом А. П. Киселевым, выдержали множество переизданий и на долгое время стали классическими для преподавания математики в российской и советской школе. Отказ от обучения «по Киселеву», по мнению многих учителей, ныне привел к значительному падению качества знаний школьников в этой области.
#математика #подборка_книг #геометрия #math #алгебра #maths
💡 Physics.Math.Code // @physics_lib
👨🏻💻 Лекции: Алгебраические волны, Алгебра практикум, Быстрая тригонометрия (В.Ф. Шаталов)
Из всех учебных предметов школьного курса физику следует признавать самым сложным во все годы работы школы, и сложность эта видится уже в одном только перечне разделов, предусмотренных обязательным учебным планом, не говоря о лоскутной разрозненности глав с неохватным объемом задачного материала. А сверх того — сотни практических обобщений, лабораторных работ с зоной переноса на астрономию, математику, химию, биологию и географию с ни с чем не сопоставимой ответственностью давать ответы на тысячи вопросов каждодневной практики.
Первые активные действия в приобщении и учителей, и ребят к обоснованно надежному усвоению физики в масштабе всей страны следует отнести к 1978 — 79 гг., когда вышли из печати опорные сигналы по физике 6 и 7 классов, не получившие, кстати сказать, ни одного негативного отклика со стороны многочисленных недоброжелателей за последующие четверть века, и нет вины сотрудников Донецкой лаборатории проблем интенсивного обучения АПН СССР в том, что не увидели света книги для старших классов.
А жизнь в последующие годы, вопреки чаяниям новоявленных реформаторов, раскручивалась по лихому детективному сюжету, одной из жертв которого стала физика. За резким сокращением количества учебных часов последовало усечение программ и выхолащивание сложности задачного материала до уровня усредненного примитива, после чего физику исключили из числа профилирующих предметов и отстранили от вступительных экзаменов во многих высших учебных заведениях, включая даже технические.
Неумолимое следствие в форме снижения научного потенциала страны придет не вдруг, но оно неизбежно, и это во всей полноте ощущают сейчас те учителя, которые прошли через многотысячные семинары по физике при Донецкой лаборатории, а вместе с ними и их молодые коллеги, которым они еще могут передать свой опыт, сохранив физику в школе и в вузе как основополагающий учебный предмет...
#лекции #видеоуроки #алгебра #тригонометрия #математика #научные_фильмы #math
💡 Physics.Math.Code // @physics_lib
🔍 Задачка по математике из беседы нашего сообщества
🖥 Обсуждение задачи в VK
#математика #math #maths #mathematics #задачи #математический_анализ #calculus
💡 Physics.Math.Code // @physics_lib
🟡 Резка дерева бумажным диском
Гервидс Валериан Иванович — доцент кафедры общей физики МИФИ, кандидат физико-математических наук.
Бумажный диск натягивают центробежные силы инерции, таким образом диск становится более жестким в плане упругости и более стабильным в плане твердости.
#опыты #эксперименты #физика #physics #наука #science #видеоуроки
💡 Physics.Math.Code // @physics_lib
⛓️ Цепь становится твердой при достижении достаточной скорости вращения. На опыте видно, что мягкая в статике цепь может катиться по столу как колесо. Почему так происходит?
Дело в том, что вращение делает мягкие тела твердыми из-за возникающей силы натяжения внутри данных тел.
Ещё один яркий пример: бумажным диском можно разрезать металлическую трубку, если диск вращается с большой угловой скоростью. На первом курсе у студентов физ-мат факультетов есть лабораторная работа: «Определение скорости полета пули кинематическим методом». Вот там как раз есть два вращающихся диска из бумаги, которые легко могут отрезать палец, если быть неаккуратным.
Попробуйте оценить порядок силы натяжения цепи с заданной массой и заданной угловой скорость вращения, а также известным диаметром. #опыты #эксперименты #физика #physics #наука #science #видеоуроки
💡 Physics.Math.Code // @physics_lib
⭕️ Экстремальная задача на смекалку. С одной стороны можно решить методами математического анализа, с другой стороны — логикой, подкрепленной школьной геометрией.
#математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ
💡 Physics.Math.Code // @physics_lib
〽️ Непрерывная везде, но не дифференцируемая нигде: визуализация функции Вейерштрасса!
В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.
Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?
Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:
f(x) = cos(3x𝝅)/2 + cos(3²x𝝅)/2² + cos(3³x𝝅)/2³ + ...
🧲 Эффект Мейснера — полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом. При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник качественно отличается от «обычного» материала с высокой проводимостью.
Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и занимает некоторый тонкий слой вблизи поверхности. Например, в случае помещённого во внешнее поле шара (см. рис.) этот ток будет формироваться носителями заряда, движущимися в приповерхностном слое по кольцевым траекториям, лежащим в плоскостях, ортогональных плоскости рисунка и полю на бесконечности (радиус колец меняется от радиуса шара в середине до нуля вверху и внизу). Роль идеальной проводимости состоит в том, что появившийся поверхностный ток протекает бездиссипативно и неограниченно долго — при конечном сопротивлении среда не смогла бы реагировать на наложение поля таким способом. Магнитное поле возникшего тока компенсирует в толще сверхпроводника внешнее поле (уместна аналогия с экранированием электрического поля индуцированным на поверхности металла зарядом). В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю. #физика #physics #опыты #эксперименты #магнетизм #электродинамика
💡 Physics.Math.Code // @physics_lib
🌀 Резонанс: частот имеет значение
Резонанс (фр. résonance, от лат. resono «откликаюсь») — частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при приближении частоты внешнего воздействия к определённым значениям, характерным для данной системы. Эти значения называют собственными частотами; в простых случаях такая частота одна, но может быть и несколько.
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если подталкивать качели в определённые моменты времени в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния можно найти по формуле: f = (1/2𝝅)√(g/L)
где g — это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна и включает эллиптический интеграл.) Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
🧬 Проблема нашего общества: люди путают полезную информацию с выдуманными сказками, магией, астрологией.
Эксперимент, показывающий несостоятельность астрологии, провел в конце 40-х годов психолог Бертрам Форер. Он провел среди студентов тест личности, однако вместо результатов раздал им случайные тексты, взятые из газетных гороскопов. После этого он предложил студентам оценить, насколько хорошо результаты «мнимого» теста описывают их личность. Студенты оценили совпадения результатов больше, чем на 80%.
Эксперимент подтвердил ранее известный эффект, названный эффектом Барнума в честь известного американского фокусника. Суть эффекта состоит в том, что люди находят совпадения в расплывчатом обобщенном описании, которое, как они считают, создано специально для них авторитетными личностями. Таким образом, людям свойственно находить в гороскопах совпадения, даже если они там отсутствуют. Это как раз объясняет широкую популярность гороскопов и астрологии в целом.
🪐 С точки зрения современной науки астрология является типичным лженаучным учением и разновидностью гадательной магии. Впервые она была отделена от астрономии ученым аль-Фараби в X веке в его «Трактате об астрологии» в части «Что правильно и что неправильно в приговорах звезд», в котором он рассматривал астрологию, как лженауку.
💡 Physics.Math.Code // @physics_lib
📕 Компьютерное моделирование физических систем [2011] Булавин Л.A., Выгорницкий H.B., Лебовка Н.И
💾 Скачать книгу
Для студентов, аспирантов и преподавателей физических, физико-химических специальностей, а также научных сотрудников.
⚙️ Компьютерное моделирование — процесс вычисления компьютерной модели (иначе численной модели) на одном или нескольких вычислительных узлах. Реализует представление объекта, системы, понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию. Включает набор данных, характеризующих свойства системы и динамику их изменения со временем.
Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний об объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.
Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу возможности проводить т. н. вычислительные эксперименты в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Формализованность компьютерных моделей позволяет определить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения её параметров и начальных условий. #моделирование #программирование #физика #математика #physics #math
💡 Physics.Math.Code // @physics_lib
⚙️ Гироскопы и их применение
Гироскоп (от др.-греч. γῦρος «круг» + σκοπέω «смотрю») — устройство, способное реагировать на изменение углов ориентации тела, на котором оно установлено, относительно инерциальной системы отсчёта. Простейший пример гироскопа — юла (волчок). Термин впервые введен Ж. Фуко в своём докладе в 1852 году во Французской академии наук. Доклад был посвящён способам экспериментального обнаружения вращения Земли в инерциальном пространстве. Этим и обусловлено название «гироскоп». #научные_фильмы #физика #механика #теоретическая_механика #термех #physics #видеоуроки #наука
Антигравитационное колесо ⚙️
📷 Как работает оптическая стабилизация изображения в камере смартфона.
🖲 Датчики следящих систем. 1985 год. КиевНаучФильм
⚙️ Гироскоп и его применение [1979]
💡 Physics.Math.Code // @physics_lib
📗 Математические методы в физике [1970] Джордж Браун Арфкен
В монографии изложены разделы математики, к которым наиболее часто приходится обращаться при решении различных физических задач. Построение книги приближает ее к справочному пособию, однако материал изложен значительно подробнее и содержит много примеров из физики, которые необходимы для пояснений.
Книга состоит из 17 глав, в которых рассматриваются векторный анализ, системы координат, тензорный анализ, матрицы и определители, бесконечные ряды, функции комплексного переменного, дифференциальные уравнения второго порядка, теория Штурма — Лиувилля, специальные функции, ряды Фурье, интегральные преобразования, интегральные уравнения, вариационный принцип.
Автору удалось найти оптимальную форму изложения, не перегруженную сложными математическими выкладками и доказательствами. Книга рассчитана на студентов-физиков, инженеров, а также может быть полезна расчетчикам.
📘 Mathematical Methods for Physicists, Seventh Edition: A Comprehensive Guide [2013] Arfken George Brown; Harris Frank E.; Weber Hans-Jurgen
Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider range of difficulty of exercises. #физика #механика #ммф #математическая_физика #math #physics #подборка_книг #mechanics #sciece
💡 Physics.Math.Code // @physics_lib