VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i
✏️ Доказательство геометрической задачи из предыдущего видео
По сути у нас работают известные школьные формулы геометрии. #gif #математика #геометрия #топология #geometry #задачи #олимпиады #разбор_задач
💡 Physics.Math.Code // @physics_lib
⚖️ Равновесие нарушится или нет? Как это объяснить?
⏳ Задача: Почему опрокинулась кювета? Кювета с водой стоит на бруске. На воде плавает коробочка с гирей. Кювета находится в равновесии. Если вынуть гирю из коробочки и поставить на дно кюветы под тем местом, где плавала коробочка, то равновесие нарушится, хотя вес левой части кюветы как будто бы не изменился. Объясните ошибку рассуждений.
📝 Решение: Коробка с гирей весит столько же, сколько и вытесненная ею вода. Поэтому перемещение коробки с гирей не нарушает равновесие кюветы. Если же в левой части кюветы вынуть гирю и поставить на дно кюветы, то коробочка всплывает, освободившаяся полость заполняется водой, левая часть становится тяжелее и равновесие нарушается.
Альтернативное рассуждение: Когда гиря плавает в коробке, то коробка вытесняет объем воды, который весит как гиря + коробка. Эта вода равномерно распределяется в поле силы тяжести. Мы можем считать, что в нашем крупном тазу (кювете) только равномерно распределенная вода, масса которой равна = масса реальной воды + масса воды, равная лодке и коробке. Когда мы вытаскиваем гирю, то вода уравнивает только плавающую коробку. А вот сама гиря уже вытесняет своим объемом количество воды, которое в этом вытесненном объеме весит меньше чем гиря. И не смотря на то, что вода распределяется равномерно, гиря всё равно является локальной областью повышенной плотности, поэтому силы перестают быть скомпенсированными и кювета опрокидывается.
#механика #динамика #физика #кинематика #гидростатика #наука #science #physics #гидродинамика
💡 Physics.Math.Code // @physics_lib
📘 Алгоритмы и структуры данных. Новая версия для Оберона [2010] Вирт Н.
В классическом учебнике тьюринговского лауреата Н. Вирта аккуратно, на тщательно подобранных примерах прорабатываются основные темы алгоритмики - сортировка и поиск, рекурсия, динамические структуры данных. Перевод на русский язык выполнен заново, все рассуждения и программы проверены и исправлены, часть примеров по согласованию с автором переработана с целью максимального прояснения их логики (в том числе за счет использования цикла Дейкстры). Нотацией примеров теперь служит Оберон/Компонентный Паскаль - наиболее совершенный потомок старого Паскаля по прямой линии. Все программы проверены и работают в популярном варианте Оберона - системе Блэкбокс, и доступны в исходниках на прилагаемом CD вместе с самой системой и дополнительными материалами. Большая часть материала книги составляет необходимый минимум знаний по алгоритмике не только для программистов-профессионалов, но и любых других специалистов
📕 Построение компиляторов [2010] Вирт Н.
Книга известного специалиста в области информатики Никлауса Вирта написана по материалам его лекций по вводному курсу проектирования компиляторов. На примере простого языка Оберон-0 рассмотрены все элементы транслятора, включая оптимизацию и генерацию кода. Приведен полный текст компилятора на языке программирования Оберон. Для программистов, преподавателей и студентов, изучающих системное программирование и методы трансляции.
📗 Алгоритмы и структуры данных [1989] Вирт Н.
Книга известного швейцарского специалиста посвящена изложению фундаментальных принципов построения эффективных и надежных программ. В ней содержится также описание и анализ основных алгоритмов. В настоящем дополнительном тираже изложение ведется на основе языка Паскаль (на который переведены все примеры с Модулы-2, использованной автором в предыдущих изданиях), что, однако, не снижает ценность излагаемого материала для пользователей других языков программирования. Для настоящего издания текст заново сверен с оригиналом; в нем исправлены замеченные опечатки. Для программистов разной квалификации, преподавателей и студентов. #математика #программирование #алгоритмы #computer_science #информатика
💡 Physics.Math.Code // @physics_lib
⚡️ Задача для наших подписчиков
Всем известен так называемый скин-эффект, ток высокой частоты начинает проходить по поверхности проводника. И при высоких частотах не может поразить человека.
В то же самое время, все мы знаем о том, что микроволновые печи дают электромагнитное излучение в диапазоне как раз микроволн, то есть, высокочастотное. Как же тогда так происходит, что с одной стороны, высокочастотный ток представляет угрозу для человека, в другом случае - нет? Напомню, что вокруг любого проводника с током будет существовать электромагнитное поле.
Проводились исследования на разных биологических структурах, что разные биологические структуры гибнут при разных частотах излучения. Более того, имеется патент. И более того, имеется уже даже в РФ разработка уничтожения вирусов при излучении определенных частот. Вирусы меня мало интересуют, больше интересует, почему смерть разных биологических структур наступает при разных частотах. Как мы помним Никола Тесла игрался с токами высокой частоты. Выходит, что он рисковал? Или нет?
Все живые биологические объекты имеют собственную частоту вибрации. От вирусов, до нашей планеты в целом. Соответственно, при прохождении в том числе и по человеку определенной частоты электромагнитного излучения может возникнуть ситуация, когда собственная частота вибрации биологической структуры совпадёт с частотой электромагнитного излучения. Возникнет резонанс или остановка колебаний.
❓ Так что же на самом деле мы можем сказать об СВЧ-излучении: опасно или безопасно? Опасно в определенном диапазоне мощностей/частот? До конца мы не знаем ничего об эффектах, возникающих в биологических объектах под действием ЭМИ ?
✏️ Обсуждение здесь 📝
✨ У владельцев электроавтомобилей всё будет плохо?
#задачи #электродинамика #магнетизм #physics #физика #электричество #science #наука #СВЧ #разбор_задач
💡 Physics.Math.Code // @physics_lib
📚 Задачи по общей физике [1988 — 2012] Иродов И.Е. — несколько изданий отличного задачника для физиков [Задачи + решения]
Задачи по общей физике: Учеб. пособие.— 2-е изд., перераб.— М.: Наука. Гл. ред. физ.-мат. лит., 1988.— 416 страниц.
Содержит около 2000 задач по всем разделам курса общей физики. Разнообразие и оригинальность многих задач в сочетании с краткими теоретическими сведениями и обширными справочными таблицами делают этот сборник полезным и удобным по данному курсу. В новом издании сделана частичная перекомпоновка материала, увеличено число более простых задач, внесены некоторые исправления. Для студентов физических и инженерно-технических специальностей вузов.
✅ Достоинства: Много действительно хороших задач, есть ответы в виде конечной формулы
❌ Недостатки: Не подойдет при слабом знании физики
Невозможно изучить физику, не научившись решать задачи. И, если на начальном этапе в этом нелегком деле хорошо подойдет сборник задач с решениями, авторами которого являются Гладской и Самойленко, о котором я писала ранее, то по мере приобретения опыта, желательно пробовать решать задачи посложнее. Такие задачи есть в большом количестве в сборнике задач по общей физике, автором которого является И. Е. Иродов.
Справедливости ради необходимо ответить, что здесь не только сложные задачи, есть задачи и попроще, и средней сложности. Решений нет, но ответы, причем как правило, не только в виде числа, но и в виде конечной формулы есть. Если это необходимо, то в ответах, помимо конечной формулы, есть еще и рисунок к задаче. Если хотите действительно изучить физику, то этот сборник задач для вас. Рекомендую "Задачи по общей физике" И. Е. Иродова для студентов технических и физико-математических специальностей ВУЗов.
Учебники: 📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047
(СБП) Сбер: +79026552832
(СБП)
#математика #maths #math #physics #физика #подборка_книг #science #наука #задачи #разбор_задач
💡 Physics.Math.Code // @physics_lib
🟢 Капля воды в узле стоячей звуковой волны
〰️ Воздействие звуковых волн различных частот на соль 🔉
🔊 Колебания, стоячие волны, резонанс и сахар в качестве индикатора узлов звуковых волн
🔊 Акустическая левитация капель
〰️ Акустическая левитация
#физика #волны #physics #science #колебания #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
📝 Задача по математике от нашего подписчика 🔬
Предыстория: задача была обнаружена на практике, во время лабораторных работы по исследованию атомно-силового микроскопа. В методичке к лабораторной данный интеграл был рассчитан неверно. Предлагаю нашим подписчикам совместными усилиями разобрать данный интересный параметрический интеграл. Ваши идеи оставляйте в комментариях:
📝 Обсуждение здесь ✏️
#задачи #math #физика #science #наука #physics #математика #разбор_задач
💡 Physics.Math.Code // @physics_lib
⚙️ Шарнир Хобсона или муфта Хобсона [Hobson's joint] — это разновидность шарнира постоянной скорости под прямым углом; стержни, согнутые на 90°, способны передавать крутящий момент вокруг угла, потому что они могут свободно поворачиваться в своих монтажных отверстиях на обеих частях муфты. Соединение Хобсона (также известное как шарнир Хобсона или муфта Хобсона) — тип прямоугольного шарнира с постоянной скоростью вращения. Шарниры Хобсона используются для изготовления коленчатых двигателей, нового устройства, а также для практических целей в инструментах и велосипедных передачах с валом.
Принцип работы: три или более угловых стержня соединяют пару вращающихся цилиндров. Каждое плечо стержня может свободно скользить и вращаться в своей «камере» в цилиндре. Стержни заставляют цилиндры вращаться синхронно друг с другом.
Применение:
▪️используется в качестве соединительной муфты в устройствах, таких как 90-градусный безредукторный угловой привод, насадка для трещотки и торцевого ключа;
▪️применяется в некоторых конструкциях велосипедов с приводом от вала;
▪️может функционировать как самостоятельный двигатель (при этом шатуны выполняют роль поршней), например, в паровых или воздушных двигателях.
#научные_фильмы #видеоуроки #физика #science #наука #механика #техника
💡 Physics.Math.Code // @physics_lib
☢️ Невероятная история человека, который выжил в ускорителе частиц 🧠
Приготовьтесь к увлекательному путешествию в мир физики элементарных частиц и невероятной человеческой стойкости с нашим видео под названием «Невероятная история человека, который выжил на ускорителе частиц». В 1978 году в Институте физики элементарных частиц Протвино в Советском Союзе Анатолий Бугорский участвовал в исследованиях, направленных на разгадку тайн Вселенной. Однако то, что произошло в тот роковой день, не смог бы предсказать ни один учёный, каким бы опытным он ни был.
Произошла ужасная авария, вызвавшая критический отказ ускорителя частиц. В мгновение ока Анатолия Бугорского поразил луч высокоэнергетических протонов невиданной ранее силы. То, что произошло дальше, было поистине экстраординарным. Пучок протонов прошел через череп Бугорского, проходя через переднюю часть его мозга.
Удивительно, но Бугорский не только пережил этот почти фатальный опыт, но и продолжил работать как учёный. Его история стала легендарной в мире исследований в области физики элементарных частиц. Что делает эту историю еще более невероятной, так это тот факт, что Бугорский не отказался от своей страсти к научным исследованиям, несмотря на трудности, с которыми он столкнулся. После аварии он прожил относительно долгую жизнь, продолжая вносить вклад в науку и став выдающимся примером мужества и решимости.
В этом видео мы глубоко погружаемся в эту невероятную историю, изучая детали аварии, удивительные последствия для тела Бугорского и то, как его опыт бросил вызов нашему пониманию науки и устойчивости человека. Пойдем с нами, и мы расскажем историю Анатолия Бугорского, человека, который встал на путь одной из самых могущественных сил природы во имя науки. История, которая напоминает нам, что поиск знаний часто приводит нас в невообразимые места и может привести к научным достижениям, которые меняют наше понимание мира. #научные_фильмы #видеоуроки #физика #science #наука #ядерная_физика #атомная_физика
💡 Physics.Math.Code // @physics_lib
🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️
Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.
Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.
Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки
💡 Physics.Math.Code // @physics_lib
💦 Моделирование жидкости (англ. fluid simulation) — область компьютерной графики, использующая средства вычислительной гидродинамики для реалистичного моделирования, анимации и визуализации жидкостей, газов, взрывов и других связанных с этим явлений. Имея на входе некую жидкость и геометрию сцены, симулятор жидкости моделирует её поведение и движение во времени, принимая в расчёт множество физических сил, объектов и взаимодействий. Моделирование жидкости широко используется в компьютерной графике и ранжируется по вычислительной сложности от высокоточных вычислений для кинофильмов и спецэффектов до простых аппроксимаций, работающих в режиме реального времени и использующихся преимущественно в компьютерных играх.
Существует несколько конкурирующих методов моделирования жидкости, каждый из которых имеет свои преимущества и недостатки. Наиболее распространёнными являются сеточные методы Эйлера, гидродинамика сглаженных частиц (англ. smoothed particle hydrodynamics — SPH), методы, основанные на завихрениях, и метод решёточных уравнений Больцмана. Эти методы возникли в среде вычислительной гидродинамики и были позаимствованы для практических задач в индустрии компьютерной графики и спецэффектов. Основное требование к данным методам со стороны компьютерной графики — визуальная правдоподобность. Иными словами, если наблюдатель при просмотре не может заметить неестественность анимации, то моделирование считается удовлетворительным. В физике, технике и математике, с другой стороны, основные требования предъявляются к физической корректности и точности моделирования, а не к её визуальному результату.
В компьютерной графике самые ранние попытки решить уравнения Навье — Стокса в трёхмерном пространстве были предприняты в 1996 году Ником Фостером (англ. Nick Foster) и Димитрисом Метаксасом (англ. Dimitris Metaxas). Их работа в качестве основы использовала более раннюю работу по вычислительной гидродинамике, которая была опубликована в 1965 году Харлоу (англ. Harlow) и Уэлшем (англ. Welch). До работы Фостера и Метаксаса многие методы моделирования жидкости были построены на основе специальных систем частиц, методах снижения размерности (типа двухмерные модели мелких водяных объёмов типа луж) и полу-случайных шумовых турбулентных полях. В 1999 году на SIGGRAPH Джос Стэм (англ. Jos Stam) опубликовал метод так называемых «стабильных жидкостей» (англ. Stable Fluids), который использовал полу-лагранжевый метод адвекции и неявные интеграции вязкости для обеспечения безусловно устойчивого поведения жидкости. Это позволило моделировать жидкости со значительно большим временным шагом и в общем привело к более быстрым программам. Позже, в 2001—2002 годах, этот метод был расширен Роном Федкивым вместе со своими сотрудниками, благодаря чему стало возможным обрабатывать сложную модель воды в трёхмерной сцене с использованием метода установленного уровня (англ. Level set method). #математика #физика #наука #gif #образование #разработка_игр #gamedev #math #physics
💡 Physics.Math.Code // @physics_lib
⭕️ Сохранение радиального движения объекта в момент отрыва от вращающей платформы ➰
Движение по радиальной траектории продолжается до тех пор, пока пружинка имеет центростремительную силу (натяжения, упругости). К сожалению, gif-анимация заканчивается как раз в тот момент, когда натяжение по направлению к центру пропадает. Но, основываясь на базовые законы классической механики, мы можем предугадать дальнейшее движение пружины.
❓Вопрос для наших подписчиков: Какое будет дальнейшее движение пружинки после того, как заканчивается данная анимация? Опишите динамику развития процесса движения.
#задачи #механика #кинематика #упругость #physics #физика #наука #science #gif #анимация
💡 Physics.Math.Code // @physics_lib
📚 Подборка книг по Астрономии, Астрофизике, Космосу
💾 Скачать книги
Астрофизика — раздел астрономии, использующий принципы физики и химии, который изучает физические процессы в астрономических объектах, таких как звёзды, галактики, экзопланеты и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.
Астрофизика — учение о строении небесных тел. Астрофизика занимается изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Само название астрофизики существует с 1865 года и предложено Цёлльнером. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science #подборка_книг
☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047
(СБП) Сбер: +79026552832
(СБП) ЮMoney: 410012169999048
💡 Physics.Math.Code // @physics_lib
💥 Зоопарк нейтронных звезд [2008] [Россия] С. Б. Попов
Научно-популярная лекция о нейтронных звёздах: об истории их обнаружения, их видах, строении, способах изучения и т.п.
Сергей Борисович Попов — кандидат физико-математических наук, научный сотрудник Государственного Астрономического института имени Штернберга.
Специализируется в области астрофизики компактных объектов (нейтронных звезд, черных дыр).
Автор около ста научных и множества научно-популярных публикаций.
💥 Астрофизика - Нейтронные звезды Попов С. Б.
0:00:00 1. Массы белых карликов и нейтронных звезд
0:06:39 2. Экстремальные источники
0:08:32 3. Предсказание нейтронных звезд
0:13:04 4. Рождение нейтронных звезд. Рентгеновские источники
0:15:44 5. Ракетные эксперименты
0:17:39 6. Тесные двойные системы
0:21:39 7. Открытие нейтронных звезд. Пульсары
0:32:14 8. Оценка параметров нейтронных звезд
0:41:00 9. Новый зоопарк нейтронных звезд. Магнитары
0:47:22 10. Центральные компактные объекты в остатках сверхновых
0:52:19 11. Чем важны нейтронные звезды
0:54:54 12. Внутреннее строение нейтронных звезд
1:08:35 13. Измерение массы
1:16:48 14. Кварковые звезды
1:20:29 15. Остывание нейтронных звезд. Кинематический возраст
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
📕 Математика после уроков [1971] Балк М.Е., Балк Г.Д
Эта книга адресована» в первую очередь, начинающему учителю математики.
Нам неоднократно приходилось наблюдать, с какими большими трудностями сталкивается вчерашний студент педагогического института , когда он пытается наладить внеклассную работу по математике. В настоящей книге делается попытка помочь ему в этом.
Книга отражает опыт советских школ, частично освещенный в печати. Авторы опирались и на свой личный опыт.
Материалами книги многократно пользовались в работе факультативного семинара, посвященного внеклассным занятиям по математике, который уже много лет проводится в Смоленском педагогическом институте.
Книга состоит из двух частей.
Главы I и III—VII первой части книги посвящены вопросам организации математического кружка, внеклассного чтения, математических экскурсий, вечеров, олимпиад, стенгазет и др. Методические соображения иллюстрируются примерами.
Глава II содержит обзор различных тем, которые могут быть использованы для кружковых занятий в V—X классах. Авторы отдавали предпочтение темам, проверенным ими в математических кружках. По многим темам приводятся примерные планы, отдельные методические замечания и указывается литература. Список книг и статей, на которые делаются библиографические ссылки, помещен в конце книги.
Вторая часть книги содержит материалы, которые учитель может использовать для подготовки занятий математического кружка или рекомендовать школьникам для самостоятельной работы.
Надеемся, что учителя математики обратятся к части II данной книги также при подборе материалов для факультативных и обязательных занятий со школьниками.
Каждая из 12 глав части II разбита на отдельные параграфы (темы), которые представляют собой либо очерки, либо наборы задач. Чтобы выделить из текста задачи, рядом с ними поставлена вертикальная черта.
Различные параграфы между собой формально почти не связаны. Наиболее полезные темы отмечены восклицательными знаками, а наиболее трудные — звездочками (одной или двумя). Такие же пометки имеются и у задач.
Большинство задач снабжено ответами, указаниями или решениями.
При написании данной книги мы частично воспользовались материалами книги М. Б. Балка «Организация и содержание внеклассных занятий по математике» и диссертацией Г. Д. Балк «Актуальные вопросы внеурочных занятий по математике в современной средней школе».
💡 Physics.Math.Code // @physics_lib
🔹🔶 Как два квадрата создают два одинаковых треугольника? 🔺=🔺
Если два квадрата имеют общий угол, то между ними образуются два треугольника – один сверху, другой снизу. И, что интересно, их площади всегда одинаковые, независимо от угла поворота этих квадратов относительно общей вершины.
💡 Сможете доказать? Если сомневаетесь, то подсказка ниже.
#gif #математика #геометрия #топология #geometry #задачи #олимпиады #разбор_задач
💡 Physics.Math.Code // @physics_lib
💧 Идеальный рез стекла с помощью физических свойств — Эффект Ребиндера
Самой яркой и наглядной демонстрацией эффекта является резка (фактически — откалывание) стекла обыкновенными ножницами в воде. Таким образом получится вырезать из стекла практически любую фигуру. В физикеэффект Ребиндера — это снижение твёрдости и пластичности материала, в частности металлов, под воздействием поверхностно-активной плёнки. Эффект назван в честь советского учёного Петра Александровича Ребиндера, который впервые описал этот эффект в 1928 году. Предлагаемое объяснение этого эффекта заключается в разрушении поверхностных оксидных плёнок и снижении поверхностной энергии с помощью поверхностно-активных веществ. Этот эффект особенно важен при механической обработке, поскольку смазочные материалы снижают силу резания.
Эффект Ребиндера
#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
📘 Алгоритмы и структуры данных. Новая версия для Оберона [2010] Вирт Н.
📕 Построение компиляторов [2010] Вирт Н.
📗 Алгоритмы и структуры данных [1989] Вирт Н.
💾 Скачать книги
Никлаус Вирт (нем. Niklaus Emil Wirth, род. 15 февраля 1934 года) — швейцарский учёный, специалист в области информатики, один из известнейших теоретиков в области разработки языков программирования, профессор компьютерных наук Швейцарской высшей технической школы Цюриха (ETHZ), лауреат премии Тьюринга 1984 года. Создатель и ведущий проектировщик языков программирования Паскаль, Модула-2, Оберон. #математика #программирование #алгоритмы #computer_science #информатика #подборка_книг
☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047
(СБП) Сбер: +79026552832
(СБП)
💡 Physics.Math.Code // @physics_lib
💫 Датой открытия электрона считается 1897 год, когда Томсоном был поставлен эксперимент по изучению катодных лучей. Первые снимки треков отдельных электронов были получены Чарльзом Вильсоном при помощи созданной им камеры Вильсона. В 1749 году Бенджамин Франклин высказал гипотезу, что электричество представляет собой своеобразную материальную субстанцию. Центральную роль электрической материи он отводил представлению об атомистическом строении электрического флюида. В работах Франклина впервые появляются термины: заряд, разряд, положительный заряд, отрицательный заряд, конденсатор, батарея, частицы электричества.
Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества. Вильгельм Вебер в своих работах с 1846 года вводит понятие атома электричества и гипотезу, что его движением вокруг материального ядра можно объяснить тепловыми и световыми явлениями. Майкл Фарадей ввел термин «ион» для носителей электричества в электролите и предположил, что ион обладает неизменным зарядом. Г. Гельмгольц в 1881 году показал, что концепция Фарадея должна быть согласована с уравнениями Максвелла. Джордж Стони в 1881 году впервые рассчитал заряд одновалентного иона при электролизе, а в 1891 году, в одной из теоретических работ Стоней предложил термин «электрон» для обозначения электрического заряда одновалентного иона при электролизе.
Катодные лучи открыты в 1859 году Юлиусом Плюккером, название дано Ойгеном Гольдштейном, который высказал волновую гипотезу: катодные лучи представляют собой процесс в эфире. Английский физик Уильям Крукс высказал идею, что катодные лучи это поток частичек вещества. В 1895 году французский физик Жан Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц, которые движутся прямолинейно, но могут отклоняться магнитным полем. #физика #physics #математика #gif #опыты #видеоуроки #math #моделирование #анимация
💡 Physics.Math.Code // @physics_lib
📚 Задачи по общей физике [1988 — 2012] Иродов И.Е. — несколько изданий отличного задачника для физиков [Задачи + решения]
💾 Скачать книги
Игорь Евгеньевич Иродов (16 ноября 1923 — 22 октября 2002) — советский и российский физик, кандидат физико-математических наук, профессор.
Учебники:
📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Книги: Иродов Игорь Евгеньевич (1923 — 2002) — доктор физико-математических наук, профессор МИФИ (1976—2002).
☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047
(СБП) Сбер: +79026552832
(СБП)
#математика #maths #math #physics #физика #подборка_книг #science #наука #задачи #разбор_задач
💡 Physics.Math.Code // @physics_lib
⚙️ Крутящий момент и мощность двигателя [ЦентрНаучФильм] 🔥
Фильм рассказывает о таких характеристиках двигателей как крутящий момент и мощность.
▪️Крутящий момент двигателя — расчетный параметр, характеризующий силу, передаваемую поршнем на коленвал. Единица измерения крутящего момента – ньютон метр (сокращенно Н*м). Передача крутящего момента от двигателя к коробке передач производится при помощи элементов механизма разрыва мощности (фрикционных дисков сцепления, гидромуфты, гидротрансформатора).
▪️Мощность двигателя — это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).
#научные_фильмы #видеоуроки #физика #science #наука #механика #техника
💡 Physics.Math.Code // @physics_lib
⚖️ Несмотря на высокую популярность этого мифа, Архимед, скорее всего, не погружал «золотую» корону в ванную, наполненную до краев, чтобы определить объем короны, а следовательно плотность и чистоту сплава.
Архимед изобрел примитивную форму гидростатических весов. Тогда плотность вещества он мог найти двумя способами.
Оба способа с математическим выводом формул рассмотрены здесь...
✏️ Подробно рассказываю в этой статье
Советую подписаться, в своем блоге на Дзен выпускаю очень много интересных статей: наука, физика, математика, IT, железо, технообзоры.
#математика #физика #геометрия #physics #разбор_задач
💡 Репетитор IT mentor // @mentor_it
⚙️ Как работает сцепление?
Сцепление — это механическое устройство, которое передаёт крутящий момент от двигателя к колёсам и отключает ведущий вал от трансмиссии.
Большую часть времени сцепление включено, то есть диск прижат к маховику. Процесс включения и выключения сцепления происходит поэтапно:
▪️ Водитель нажимает педаль сцепления. Усилие через трос или по гидравлической магистрали передаётся на вилку.
▪️ Выжимной подшипник перемещается и утапливает лепестки диафрагменной пружины. Связь «двигатель-трансмиссия» разрывается.
▪️ Водитель выбирает нужную передачу и плавно отпускает педаль, скорость вращения маховика и ведомого диска уравниваются.
▪️ Диск сцепления прижимается к маховику и передача крутящего момента возобновляется.
📝 Интересный факт: У педали сцепления с гидравлическим приводом всегда имеется небольшой (обычно не более 10…15 мм на педали) свободный ход в самом начале нажатия педали, обусловленный наличием конструктивного зазора в 2…3 мм между шарнирно соединённым с педалью сцепления толкателем и приводимым им в движение поршнем главного цилиндра сцепления — это необходимо для того, чтобы обеспечить полное включение сцепления при отпускании педали и исключить его пробуксовку при движении автомобиля. У педали сцепления с тросовым приводом полный ход увеличивается по мере износа ведомого диска (педаль сцепления приподнимается относительно пола), вместе с ним увеличивается и её рабочий ход. Педаль следует отпускать плавно с самого начала, так как сцепление срабатывает всегда «внизу». Свободный ход педали обеспечивается регулировкой длины троса и составляет обычно порядка 30…40 мм. #научные_фильмы #видеоуроки #физика #science #наука #механика #техника
💡 Physics.Math.Code // @physics_lib
⚫️ Функция (Функции и графики) 1990
Функция — одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира. Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами.
🔴 Функция и графики. Раздел 1 (Функции и графики) 1975
Соответствия между множествами. Функция. Способы задания функции. Табличный способ задания функции. Задание функции формулой. График прямой пропорциональности. График обратной пропорциональности.
🔵 Функция и графики. Раздел 2 (Функции и графики) 1975
Определение линейной функции. График линейной функции. Угловой коэффициент прямой. Графическое решение системы уравнений. Функция у = а⋅х² и её график.
#научные_фильмы #видеоуроки #математика #math #алгебра #геометрия
💡 Physics.Math.Code // @physics_lib
⚠️ Без этого ты вряд ли решишь 18 задачу на ЕГЭ 2025
За оставшиеся 3 месяца реально затащить параметры, если правильно ботать — и мы знаем, как это сделать 😎
Приходи на специальный марафон по решению параметров функциональным методом
‼️ Только до 12 марта ты сможешь попасть на него БЕСПЛАТНО.
Тебя ждут:
✔️ 15 дней теории и практики решения параметров функциональным методом.
✔️ Проверка заданий.
✔️ Опытные преподаватели, обучившие больше 2000 учеников, 300 из которых набрали 90+ баллов на ЕГЭ.
✔️ Крутые подарки, которые помогут тебе с подготовкой.
Успей зарегистрироваться — количество мест ограничено ⬇️
https://clck.ru/3HEGSy
➰ Брахистохрона (от греч. βράχιστος «кратчайший» + χρόνος «время») — кривая скорейшего спуска. Задача о её нахождении была поставлена в июне 1696 года Иоганном Бернулли следующим образом:
Среди плоских кривых, соединяющих две данные точки A и B, лежащих в одной вертикальной плоскости ( B ниже A), найти ту, двигаясь по которой под действием только силы тяжести, сонаправленной отрицательной полуоси OY, материальная точка из A достигнет B за кратчайшее время.
📚 Подборка книг по Астрономии, Астрофизике, Космосу
📔 Черные дыры, белые карлики и нейтронные звезды (в двух частях) [1985] Шапиро С., Тьюколски С
📕 Нейтронные звезды и пульсары [1973] Дайсон Ф., Тер Хаар Д.
📗 Астрофизика нейтронных звезд [1987] Липунов Владимир Михайлович
📘 Небо и телескоп [2019] Сурдин В.Г.
📙 Галактики [2013-2019] Сурдин В.Г.
📓 Релятивистская астрофизика и физическая космология [2011] Бисноватый-Коган Г.С.
📒 Теоретическая астрофизика [1952] Амбарцумян В.А.
📕Нейтринная астрофизика [1993] Бакал Дж.
📗 Книга для чтения по астрономии. Астрофизика [1988] Дагаев М.М., Чаругин В.М.
📘 Солнечная система [2017] Сурдин В.Г.
📙 Звёзды [2009] Сурдин В.Г.
Теоретическая астрофизика есть наука, которая изучает и объясняет физические явления, происходящие в небесных телах, на основе законов физики. При этом теоретическая астрофизика широко пользуется математическим аппаратом, который, однако, играет только вспомогательную роль.
Теоретическая астрофизика является молодой и весьма быстро развивающейся наукой. Но её успехи уже сейчас имеют большое значение для всех отраслей астрономии и для многих отраслей физики.
💡 Physics.Math.Code // @physics_lib
👨🎓Завершилась масштабная международная олимпиада по промышленной разработке PROD от Центрального университета, Т-Банка и НИУ ВШЭ
Соревнования были посвящены разработке ПО, применяемого в реальных бизнес-процессах бигтех компаний. Участниками PROD стали свыше 4000 школьников из всех регионов России и 23 стран мира, в том числе из Великобритании, Франции, Германии и Китая. Они решали задачи по созданию систем, автоматизации процессов и разработке приложений для повышения эффективности и сокращению затрат компаний.
Финальный этап длился 5 дней и проходил в Москве. Участники в командах создавали полноценные IT-продукты: платформу для проведения соревнований по анализу данных, сервис для обмена книгами, а также проект по созданию программ лояльности для партнеров Т-Банка.
Победителями стали 17 школьников из России и Беларуси. Они получили грант в размере 100% на обучение в Центральном университет, скидку до 90% на совместный бакалавриат Факультета компьютерных наук НИУ ВШЭ и Центрального университета, а также возможность пройти упрощенный отбор на стажировку в Т-Банк. #science #наука #образование #разработка #физика
💡 Physics.Math.Code // @physics_lib
🧊 Аэрогели — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.
Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 %, а как правило, 95—99,8 % объёма, а плотность составляет от 1 до 150 кг/м³. По структуре аэрогели представляют собой древовидную сеть из объединённых в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.
На ощупь аэрогели напоминают легкую, но твёрдую пену, похожую на пенопласт. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые, — хорошие теплоизоляторы. Они также очень гигроскопичны.
По внешнему виду кварцевые аэрогели полупрозрачны. За счёт рэлеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем. Сходными оптическими свойствами обладают аэрогели на основе оксидов алюминия (Al₂O₃), циркония (ZrO₂) и титана (TiO₂). Аэрогели из других оксидов металлов могут иметь различный цвет и прозрачность; так, железооксидный аэрогель непрозрачен и имеет цвет, сходный со ржавчиной, ванадиевооксидный аэрогель непрозрачен, оливково-зелёного цвета; хромооксидный аэрогель имеет тёмно-зелёный или тёмно-синий цвет, а аэрогели на основе оксидов редкоземельных металлов прозрачны (оксид самария жёлтый, оксид неодима фиолетовый, оксиды гольмия и эрбия — розовые). Углеродные аэрогели имеют глубокий чёрный цвет, поглощая 99,7 % падающего света. Температура плавления кварцевого аэрогеля составляет 1200 °C.
⚡️ Углеродные аэрогели (аэрографиты) состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и могут использоваться в качестве электродов в конденсаторах. За счёт очень большой площади внутренней поверхности (до 800 м²/грамм) углеродные аэрогели нашли применение в производстве суперконденсаторов (ионисторов) ёмкостью в тысячи фарад. В настоящее время достигнуты показатели в 104 Ф/грамм и 77 Ф/см³. Углеродные аэрогели отражают всего 0,3 % излучения в диапазоне длин волн от 250 до 14 300 нм, что делает их эффективными поглотителями солнечного света. Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения. #физика #physics #science #аэрогель #химия #наука #астрономия #астрофизика
💡 Physics.Math.Code // @physics_lib
📕 Математика после уроков [1971] Балк М.Е., Балк Г.Д
💾 Скачать книги
Пособие содержит интересный материал для внеклассной работы по математике и методические указания к нему.
Часть I
Глава I. Организация кружковых занятий 9
Глава II. Тематика кружковых занятий 31
Глава III. Математические экскурсии. Моделирование 80
Глава IV. Внеклассное чтение. Математические сочинения 05
Глава V. Школьная математическая печать 101
Глава VI. Математические вечера 103
Глава VII. Математические состязания 121
Часть II
Глава I. Занимательные задачи для семиклассников 135
Глава II. Множества, алгоритмы, высказывания 154
Глава III. На стыке арифметики и алгебры 169
Глава IV. Функции й уравнения 200
Глава V. Изучая планиметрию 215
Глава VI. Понятие площади и его применение 236
Глава VII. Математика, логика, эвристика 245
Глава VIII. Комбинаторика и теория вероятностей 286
Глава IX. Неравенства и их применение 305
Глава X. Последовательности 321
Глава XI. Геометрия для десятиклассников 361
Глава ХII. Тригонометрия и комплексные числа 372
#математика #физика #информатика #алгебра #задачи
💡 Physics.Math.Code // @physics_lib