по всем вопросам @haarrp @itchannels_telegram - 🔥 best it channels @ai_machinelearning_big_data -ML @ArtificialIntelligencedl -AI @datascienceiot - ml 📚 @pythonlbooks -📚books
⚡️Строим рекомендательную систему фильмов на Kaggle
Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬
Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.
Что будем делать на вебинаре:
🟠Разберем имеющиеся данные фильмов с их оценками
🟠Проведем предобработку данных
🟠Построим рекомендательную систему на основе машинного обучения
🟠Проведем расчет и анализ метрик на основе результатов работы модели
Вебинар будет интересен как новичкам, так и уже опытным специалистам
😶Зарегистрироваться на бесплатный вебинар
👩💻 Docker — лучший канал для ускоренного обучения DevOps.
С помощью инфографики, наглядных визуализаций и коротких обучающих видео вы изучите все ключевые концепции работы с Docker и методики DevOps.
Прокачать скиллы: t.me/DevopsDocker
Поздравляем, вы на 1 шаг ближе к работе мечты 🥳
Осталось только прочитать этот пост, подписаться на канал и откликнуться на вакансию 😉
Avito Career — место, где Авито делится актуальными вакансиями и стажировками для Python-разработчиков.
Подписывайтесь, чтобы найти ту самую работу ✨
📌 Tracecat — open-source платформа для автоматизации безопасности. Этот проект предлагает YAML-шаблоны для создания workflow с визуальным редактором, упрощая автоматизацию рутинных задач.
Инструмент позволяет интегрировать Temporal для надёжного выполнения сценариев и поддержка MITRE D3FEND. Локальный запуск возможен через Docker Compose, а для продакшена есть Terraform-конфиги для AWS Fargate.
🤖 GitHub
@pythonl
🖥 Важная особенность генераторов в Python!
Давай разберемся, как это работает:
Что такое Генератор?
Функция my_generator_function
является генератором, потому что она использует ключевое слово yield
.
В отличие от обычной функции, которая выполняет весь код и возвращает одно значение через return, генератор "приостанавливается" на каждом yield, возвращая указанное значение.
При следующем вызове он возобновляет работу с того места, где остановился.
Как работает yield
:
Когда вы вызываете gen = my_generator_function()
, код внутри функции не выполняется.
Создается специальный объект-генератор (gen
).
Первый вызов next(gen)
заставляет функцию выполниться до первого yield 1. Функция возвращает 1 и приостанавливается.
Второй вызов next(gen) возобновляет выполнение с точки после yield 1 и доходит до yield 2. Функция возвращает 2 и снова приостанавливается.
Именно поэтому print(next(gen), next(gen)) выводит 1 2.
Как работает return в генераторе:
Когда поток выполнения внутри генератора доходит до оператора return (в нашем случае return 73) или просто до конца функции без явного return, генератор считается завершенным.
Важно: Значение, указанное в return (здесь 73), не возвращается как обычное значение через yield. Вместо этого генератор выбрасывает (raises) специальное исключение: StopIteration.
Этот механизм StopIteration - стандартный способ в Python сигнализировать, что итератор (а генератор - это тип итератора) исчерпан.
Перехват StopIteration и получение значения:
В правой части кода мы пытаемся вызвать next(gen) еще раз.
Генератор возобновляется после yield 2, доходит до return 73 и выбрасывает StopIteration.
Конструкция try...except StopIteration as err: перехватывает это исключение.
Ключевой момент (показан стрелкой на картинке): Значение, которое было указано в операторе return генератора (73), становится доступным как атрибут .value пойманного исключения StopIteration.
Поэтому print(err.value) в
ыводит # 73.
Итог:
Teturn в генераторе не производит очередное значение, а завершает его работу. При этом значение из return "упаковывается" в исключение StopIteration, сигнализирующее об окончании, и его можно извлечь из атрибута .value этого исключения, если перехватить его вручную.
Стандартный цикл for item in generator(): в Python автоматически обрабатывает StopIteration (просто завершает цикл) и не дает прямого доступа к err.value. Поэтому для демонстрации этого механизма и получения возвращаемого значения используется явный вызов next() внутри блока try...except.
@pythonl
🧠 Влияет ли кэш CPU на производительность Python-кода?
Лукас Аткинсон провёл серию тестов, чтобы проверить, как поведение CPU-кэша влияет на время выполнения Python-кода. Результаты удивляют.
🔍 Ключевые выводы:
- Последовательный доступ к спискам быстрее, чем случайный
- При 200k элементах случайный доступ медленнее на 47%
- При 1.6M элементов — почти в 4 раза
- Python чувствителен к низкоуровневым аспектам памяти, в том числе CPU-кэшу
💡 Совет: при работе с большими объёмами данных используй последовательный доступ — это реально ускоряет код.
📖 Читать подробнее: lukasatkinson.de
@pythonl
🖥 Строковый метод translate позволяет заменять (или удалять) несколько символов строки за один проход. (Похоже на множественные вызовы метода replace.)import string
s = "Hello, world!"
print(s.translate(str.maketrans("", "", string.punctuation)))
# Hello world
Строковый метод translate
ожидает «таблицу перевода», которую мы создаем с помощью вспомогательного метода класса maketrans.
Третий аргумент (string.punctuation в примере) — это строка символов, которые мы хотим удалить.
(на которое указывает стрелка):
Значение string.punctuation
!'#$%&\'()*+,-./:;<=>?@[\\]^_{|}~`
Суть шпаргалки: Она показывает, как эффективно удалить все стандартные знаки препинания из строки в Python, используя комбинацию методов str.maketrans для создания "инструкции" по удалению и str.translate для применения этой инструкции к строке.
@pythonl
🐍 Задача по Python: Замыкания и области видимости
Что выведет следующий код?
def outer():
x = 5
def inner():
nonlocal x
x += 1
return x
return inner
f = outer()
print(f())
print(f())
print(f())
7
8
5
5
6
6
outer
создаёт замыкание. Переменная x
сохраняется между вызовами f
, потому что inner
— замыкает x
и изменяет её с помощью nonlocal
. Это классический пример использования замыканий в Python.🚀 Автоматизируй Docker для Python за 1 команду с Python
📦 Dockerpyze — мощный опенсорс-инструмент, который превращает любой Python-проект на uv или poetry в Docker-образ без ручной возни.
💡 Просто добавь - [tool.dpy]
в pyproject.toml
, укажи entrypoint
— и собирай образы одной командой. Без Dockerfile, без боли.
🔧 Поддерживает:
✅ PEP-621
✅ uv и poetry
✅ кастомные переменные, порты и зависимости
✅ CI/CD (в т.ч. GitHub Actions)
🔥 Подходит для быстрой упаковки ML-сервисов, REST API, CLI-инструментов и всего, что крутится на Python.
▪ Github
#python #docker #poetry #uv #devtools #opensource #cli
@pythonl
🚀 Летняя школа бэкенда Яндекса открыла набор!
Хочешь провести лето с пользой, развивая реальные сервисы в команде с профи? Это твой шанс!
Если ты:
• Уверенно пишешь на Python, Java или C++
• Понимаешь основы алгоритмов и структур данных
— подавай заявку в Летнюю школу бэкенд‑разработки Яндекса.
🗓 Формат обучения:
• 2 июня – 27 июля — онлайн-лекции и практика
• 28 июля – 24 августа — работа над проектами (онлайн или офлайн)
💡 Что тебя ждёт:
• Реальные задачи и работа в фулстек-команде
• Наставничество от инженеров Яндекса
• Возможность получить офер: >50% выпускников становятся стажёрами или сотрудниками компании
• Нетворкинг, лекторий и крутая атмосфера
📍Участие бесплатное.
🕓 Заявки принимаются до 27 апреля. Не упусти!
🔗 Подробнее
#backend #летняяшкола #яндекс #стажировка #разработка #python #java #cplusplus
⚡️Поступили новости от Kaspersky!
В «Лаборатории Касперского» стартовал набор на оплачиваемую стажировку SafeBoard по нескольким направлениям тестирования! Если ты студент вуза Москвы/МО или учишься в Школе 21 и готов(а) работать от 20 часов в неделю, присоединяйся к нашим IT-командам.
Ты научишься интересным задачам:
Разрабатывать подходы и методики тестирования;
Анализировать требования и проектную документацию;
Участвовать в развитии тестового фреймворка на Python;
Поддерживать CI/CD;
Расширять тестовое покрытие для KasperskyOS.
Тебя ждет зарплата, компенсация питания и крутая атмосфера в офисе: спортзал, сауна, игровые комнаты, кофейные паузы и многое другое 😇
Делай крутые тесты, регистрируйся https://kas.pr/bn12?erid=2W5zFJhkKRr
Реклама. Рекламодатель АО «Лаборатория Касперского» ИНН 7713140469
Инженеры и любители работать с железом, отмечаем даты: 25 и 26 апреля в Москве пройдет Repair Cafe.
Когда-то Яндекс начинался с Поиска, а сегодня в компании полный in-house цикл производства железа: роботы-доставщики, автономный транспорт, умные устройства для дома и многое другое. И для тех, кто разделяет этот инженерный дух и не боится пробовать и создавать, Яндекс проводит Repair Cafe.
Оба дня будет работать мастерская — сердце всего мероприятия. Место для тех, кто хочет припаять контакты, починить наушники или разобрать проигрыватель под чутким присмотром опытных наставников. Там же будет доступно целое меню паяльников и нужных запчастей. А любителей ретро-железа ждет починка культового ПК «Ленинград», который выпускался еще в конце 80-х годов.
Кроме того, можно послушать доклады, где спикеры поговорят про неочевидные особенности термодизайна серверов и расскажут, как им удалось сделать устройство для чтения ДНК напильником.
Зарегистрироваться и ознакомиться с программой можно здесь. Прием заявок открыт до 16 апреля.
🖥 Ibis — SQL и Python в одном флаконе
Надоело переключаться между SQL и pandas?
Ibis — это библиотека, которая объединяет лучшее из двух миров: SQL-запросы и Python-пайплайны в одном коде.
📦 Установка (с DuckDB и примерами):
bash pip install 'ibis-framework[duckdb,examples]'
import ibis
penguins = ibis.examples.penguins.fetch()
# SQL внутри Python
res = penguins.sql(\"""
SELECT species, island, count(*) AS count
FROM penguins GROUP BY 1, 2
\""")
# Python-стиль фильтрации и сортировки
res.order_by("count")
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ count ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ string │ string │ int64 │
├───────────┼───────────┼───────┤
│ Adelie │ Biscoe │ 44 │
│ Adelie │ Torgersen │ 52 │
│ Adelie │ Dream │ 56 │
│ Chinstrap │ Dream │ 68 │
│ Gentoo │ Biscoe │ 124 │
└───────────┴───────────┴───────┘
🖥 Watchdog — это библиотека, специализирующаяся на отслеживании изменений в файловой системе, но в стильном дизайне.
Инструмент даёт возможность фиксировать любые операции с файлами и директориями (создание, удаление, модификация, перемещение) и поддерживает работу в средах Linux, macOS и Windows
Библиотека будет особенно полезна в таких случаях, как:
▪ автоматический перезапуск серверов при обновлениях файлов
▪ обработка вновь загружаемых файлов в заданную директорию
▪ синхронизация содержимого папок
▪ создание механизмов резервного копирования, оперативно реагирующих на изменения
🔗 Watchdog
🔗 Документация
@pythonl
🗂️ Ballista — распределённый движок запросов, построенный на базе Apache DataFusion. Инструмент позволяет параллельно выполнять запросы на множестве узлов, сохраняя совместимость с существующими SQL-запросами, включая сложные JOIN, подзапросы и CTE.
Развёртывание упрощено благодаря Docker-образам и поддержке Kubernetes, а встроенные бенчмарки показывают, что Ballista уже способна конкурировать с Spark по скорости обработки TPC-H-подобных запросов.
🤖 GitHub
@pythonl
🚀 Python-разработчик — от основ до синьора.
Если вы ищете структурированный roadmap в бэкенд-разработке на Python, обратите внимание на дорожную карту от Boot.dev. Она начинается с базовых навыков (Linux, Git, ООП) и ведёт к сложным темам: алгоритмы, HTTP-серверы, безопасность и DevOps-инструменты.
Создатели сделали акцент на практике. После каждого теоретического блока предлагается создать проект: от простого бота до агрегатора блогов с использованием SQL и облачных хранилищ.
🤖 GitHub
@python_job_interview
🐍 Dulwich — проект, предлагающий альтернативу классическим библиотекам вроде GitPython и pygit2. Это полностью Python-реализация Git-клиента без зависимостей от нативного Git.
Инструмент поддерживает как низкоуровневые операции с репозиториями, так и сложные команды, имитирующие интерфейс командной строки Git. Для тех, кому важна производительность, есть опциональные Rust-расширения.
🤖 GitHub
@pythonl
🖥 Python на скорости Rust
Новый Function (fxn) — фреймворк, который компилирует Python-функции в нативный код с производительностью, сравнимой с Rust.
🧠 Как это работает?
- Использует символическое трассирование на CPython для анализа функций
- Генерирует промежуточное представление (IR)
- Транслирует IR в C++ или Rust, а затем компилирует в бинарный код
- Поддерживает платформы: Linux, Android, WebAssembly и др.
📦 Пример:
@compile
def fma(x: float, y: float, z: float) -> float:
return x * y + z
После компиляции вы получаете нативный бинарник, который можно запускать без интерпретатора Python.
🔗 Подробнее
🔗 Github
@pythonl
#Python #Rust #fxn #Compiler #Performance #AI #ML #Wasm
🌟 TARIFF — инструмент, который вы реально ждали, Python-пакет, который делает импорты «Великими» снова.
Инструмент позволяет вводить "пошлины" на Python-библиотеки, замедляя загрузку определённых пакетов, чтобы подчеркнуть идею "экономического протекционизма" в коде.
✔️ Основные особенности
Имитация тарифов на импорты: пользователь может установить "тарифы" (в процентах) на определённые пакеты, например:
import tariff
tariff.set({
"numpy": 50, # 50% тариф на numpy
"pandas": 200, # 200% тариф на pandas
"requests": 150 # 150% тариф на requests
})
JUST IMPOSED a 50% TARIFF on numpy! Original import took 45000 us, now takes 67500 us. American packages are WINNING AGAIN! #MIPA
Стартовал набор в ШАД — успейте подать заявку!
Технологии меняют нашу реальность, но за их развитием стоят люди, которые умеют находить нестандартные решения. И именно в Школе анализа данных Яндекса готовят таких специалистов! Здесь амбициозные и увлечённые студенты:
- погружаются в машинное обучение, Data Science и искусственный интеллект;
- перенимают опыт экспертов из индустрии;
- учатся решать задачи, стоящие перед ведущими IT-компаниями и исследовательскими центрами.
Учёба в ШАДе — это серьёзный вызов даже для тех, кто уже знаком с анализом данных. Поступить непросто, но если вы готовы к интенсивной нагрузке, нестандартным кейсам и полной пересборке своего мышления — это место для вас! За 2 года обучения вы получите инструменты и навыки, которые позволят работать над сложнейшими задачами индустрии, запускать собственные проекты и двигать науку вперёд.
Занятия полностью бесплатны и проходят по вечерам. Если в вашем городе нет филиала, можно учиться онлайн. Готовы бросить вызов данности? Тогда подавайте заявку до 4 мая!
Аналитиков данных становится все больше, а вы до сих пор не понимаете, что это за специалисты, и чем они занимаются?
Онлайн-школа Data Science karpovꓸcourses приглашает на бесплатный вебинар, где вы не только узнаете все о востребованной профессии, но еще и поймете, подходит ли вам эта сфера, и как начать развиваться в ней!
Старт: 15 апреля в 19:00 мск.
Спикер вебинара — преподаватель karpovꓸcourses и Team lead команды продуктовой аналитики в Raiffeisen CIB — расскажет о том, какие навыки нужны для старта карьеры, и с какими задачами работают аналитики каждый день.
А в конце вебинара вас ждет бонус от школы karpovꓸcourses — карьерный гайд и промокод на скидку на обучение.
Регистрируйтесь, чтобы не упустить возможность узнать больше о профессии аналитика данных и сделать шаг к новой карьере →
https://clck.ru/3L4Y8K/?erid=2VtzqwmamE1
Реклама. ООО «Карпов Курсы», ИНН: 7811764627, erid: 2VtzqwmamE1
🌟 NVIDIA добавила нативную поддержку Python в CUDA.
Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.
Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».
Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.
Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.
🟢Во-первых, появилась библиотека cuPyNumeric
— аналог NumPy
, который переносит вычисления с CPU на GPU буквально заменой импорта.
🟢Во-вторых, CUDA Core переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей.
🟢В-третьих, добавлены инструменты для профилирования и анализа кода, а ускоренные C++-библиотеки теперь доступны из Python без потерь в производительности.
Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.
Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.
Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.
🔜 Посмотреть полную презентацию на GTC 2025
@ai_machinelearning_big_data
#AI #ML #Python #CUDA #NVIDIA
🧠 Python-задача на внимательность и знание подводных камней
Что выведет этот код?
def make_funcs():
funcs = []
for i in range(3):
def wrapper(x=i):
return lambda: x
funcs.append(wrapper())
return funcs
a, b, c = make_funcs()
print(a(), b(), c())
🚀 Как Duolingo ускорил микросервисы на 40% с помощью асинхронного Python 🐍⚡
Duolingo рассказали, как им удалось значительно повысить производительность своих Python-сервисов, переведя их на async/await
, и сделали это не ради хайпа, а ради экономии.
💸 Мотивация: производительность и снижение затрат
Duolingo работает с большим количеством микросервисов, обрабатывающих огромные объёмы трафика. Несмотря на высокую нагрузку, многие их Python-сервисы простаивали в ожидании I/O — например, сетевых запросов или операций с базой данных. Это означало неэффективное использование CPU, а значит — деньги на облачный хостинг тратились зря.
Асинхронный код — способ “переключаться” между задачами во время ожидания, используя CPU с большей отдачей. Именно это стало главной мотивацией: не “просто быть async”, а снизить расходы.
⚙️ Как проходила миграция
Процесс был постепенным и продуманным. Ниже ключевые шаги:
▪ Переход не “всё или ничего”
Команда не бросалась переписывать весь сервис с нуля. Они начали с конвертации отдельных маршрутов (routes) на async def, добавляя поддержку асинхронности по частям.
▪ Инструменты постепенно адаптировали
Библиотеки и инструменты внутри компании пришлось обновить:
▪ свой HTTP-клиент переписали под aiohttp,
▪ систему аутентификации сделали совместимой с async-контекстами,
▪ логирование, трассировка и метрики обновили под async-архитектуру.
▪ Тесты и инфраструктура
Асинхронные изменения требовали пересмотра тестов. Они внедрили поддержку pytest-asyncio и переосмыслили подход к мокам и фикстурам.
▪ Запуск в проде — поэтапно
Сначала маршруты работали в синхронном режиме. Потом их перевели в async-режим и замерили разницу. Так удалось отловить “узкие места” до массового внедрения.
📈 Результаты: +40% производительности на инстанс
▪ У каждого экземпляра микросервиса CPU начал использоваться эффективнее.
▪ Снизилось среднее время ответа (latency).
▪ Уменьшилось количество необходимых инстансов — экономия в $$$.
▪ Код стал удобнее масштабировать и поддерживать в I/O-интенсивной среде.
Пока один запрос “ждёт”, процессор может выполнять другие задачи.
🔍 Выводы
Duolingo подчёркивает:
асинхронность не нужна “просто потому что модно”.
Но если у вас сервис с большим числом I/O-операций и важна производительность — async Python может дать реальный прирост и экономию.
➡ Оригинальный пост
@pythonl
🖥 Разработка игры в стиле Mario с нуля на Python
Создание собственной игры в духе легендарного Super Mario Bros — это отличный способ прокачать навыки программирования, погрузиться в основы геймдева и просто повеселиться.
Гайд по разработке простой платформенной игры с нуля Python, используя библиотеку Pygame.
📌 Гайд
@pythonl
🔌 python-kasa — управление умными устройствами TP-Link из Python.
Если у вас есть умные розетки, лампы или другие устройства TP-Link и вы хотели бы автоматизировать их через Python, обратите внимание на эту библиотеку. С её помощью можно легко включать/выключать устройства, проверять их статус и даже управлять через командную строку. Поддерживаются как модели Kasa, так и Tapo, включая розетки, выключатели, лампы и даже камеры.
🤖 GitHub
@pythonl
🗣 OuteTTS 1.0 — это современный open-source инструмент для синтеза речи (Text-to-Speech), который делает акцент на высоком качестве озвучки, клонировании голоса и поддержке множества языков. Основные особенности:
🔊 Ключевые возможности:
Высокая производительность:
Способен генерировать аудио до 42 секунд (~8192 токена) за один прогон.
Однако для наилучших результатов рекомендуется ограничиваться ~7000 токенами.
- Поддержка клонирования голоса:
Использует референсный голос (speaker reference) длиной, например, 10 секунд. В таком случае контекст для синтеза сокращается: доступно около 32 секунд активного контента (из 42).
- 20 языков:
Поддерживает озвучку на 20 различных языках, что делает его универсальным решением для мультиязычных проектов.
🛠️ Под капотом:
Хотя подробностей о модели в описании немного, из GitHub-репозитория следует, что:
Используются современные архитектуры трансформеров для TTS.
Поддерживается реалистичное клонрование голоса по короткому фрагменту.
Скорость генерации и качество аудио находятся на уровне лучших TTS-систем с открытым кодом.
Установка: git clone https://github.com/edwko/OuteTTS.git
cd OuteTTS
pip install -r requirements.txt
python
from outetts import OuteTTS
tts = OuteTTS(
reference_speaker_path="reference_audio/igor_voice.wav",
language="ru" # поддерживаются и другие языки, например: "en", "ja"
)
text = "Привет, Python разработчик! Я твой кастомный голосовой ассистент."
audio = tts.generate(text)
with open("output.wav", "wb") as f:
f.write(audio)
🖥 DeepGit: Repo Discovery — это открытый AI-инструмент, который помогает находить полезные репозитории на GitHub с помощью семантического поиска.
Он основан на системе LangGraph, использует анализ кода, документации и сигналов из сообщества, чтобы отфильтровывать малоизвестные, но перспективные проекты.
Ключевые возможности:
▪ Семантическая проверка: ищет не просто по ключевым словам, а «понимает» содержание.
▪ Многогранный анализ: учитывает не только код, но и документацию, активность и отзывы сообщества.
▪ GitHub-интеграция: фокусируется на данном экосистемном источнике, упрощая отбор качественных проектов.
🖥 GitHub
@pythonl
Последний шанс попасть на ключевое ИТ-событие весны — Data Fusion 2025!
Уже 16–17 апреля в Москве состоится одна из крупнейших конференций по анализу данных и ИИ. Если вы еще не зарегистрировались — поторопитесь!
Data Fusion 2025 — это не просто конференция, а место, где ежегодно собираются разработчики, аналитики, инженеры данных, исследователи, бизнес и госструктуры, чтобы обсудить, как ИИ и данные меняют индустрию.
Что в программе?
✔️ 70+ сессий — от ML-инфраструктуры до внедрения генеративных моделей
✔️ 250+ экспертов — разработчики, архитекторы, лидеры компаний и науки
✔️ Тренды и инсайты этого года — новые подходы к DataOps и управлению качеством данных
✔️ Кейсы от топовых ИТ-компаний — только актуальные и проверенные решения
📌Москва, технологический кластер «Ломоносов», 16-17 апреля.
Не откладывайте на потом, регистрирация скоро закроется 💣 — https://data-fusion.ru/. Участие бесплатное!
—
*ML — машинное обучение
*DataOps — методология разработки и предоставления данных
Model Context Protocol – незаменимый инструмент для ML-соревнований, где нужно использовать всю мощь LLM. С помощью нового стандарта подключения AI-ассистентов к бизнес-приложениям от Anthropic ты сможешь интегрировать ИИ в свой проект – идеальное решение для хакатона, где время ограничено.
В новой статье разбираемся, как устроен протокол, как поднять собственный MCP-сервер и использовать его в IT-соревнованиях. Ты узнаешь про:
🔤 Архитектуру Model Context Protocol.
🔤 Основные возможности стандарта.
🔤 Примеры реализации: от простых к сложным.
Сосредоточься на создании уникального AI-ассистента. Как это сделать? Ответ в статье: https://cnrlink.com/mcpitonecuppydjango
А проверить всю мощь MCP можно на IT_ONE Cup. ML Challenge. Зарегистрируйся, выбери один из трех треков и раздели призовой фонд в 1 500 000 рублей.
MCP станет одним из важных инструментов для разработки ИИ-помощников в задачах соревнования:
🔤 Динамические контекстные подсказки для системного аналитика.
🔤 AI-генератор дизайн-макетов по описанию требований.
🔤 Система визуализации BPMN-диаграмм.
MCP позволит использовать локальные модели, которые сделают решения более автономными и безопасными – их будет легче адаптировать под задачи соревнования.
Регистрация открыта до 11 апреля включительно: https://cnrlink.com/itonecupmlpydjangomcp