physics3p | Unsorted

Telegram-канал physics3p - Quantum Physics

9812

📷 پیج رسمی اینستاگرام: https://www.instagram.com/quantum.physics3p 👥 گروه فیزیک: https://t.me/+78Sx2BpWbDk0Yzhk تبادل و تبلیغات: @matin_mf

Subscribe to a channel

Quantum Physics

🔸 مدل‌های فریدمن


فریدمن، کیهان‌شناسی را بر مبنای نسبیت عام بنا نهاد. آنچه که اون انجام داد انتخاب های درست بود. وی فرض انیشتین و دوسیتر مبنی بر اینکه جهان ایستا است را کنار گذاشت و به درستی فرض کرد که هیچ گواهی در دست نیست که این پیش داوری را تأیید کند. اما او به همگن و همسانگرد بودن جهان وفادار ماند.

فریدمن دریافت که جواب های معادلات بدون ثابت کیهانشناختی به سه دسته تقسیم می‌شوند. یک دسته به مدلهای جهان بسته مربوط میشوند. این جواب ها مدلهای ریاضیاتی هستند که جهان در حال انبساطی را توصیف می‌کنند که در آن چگالی آنقدر زیاد است که دست اخر میدان گرانشی انبساط را متوقف می‌کند. آنگونه که شکل۱ نشان می‌دهد، هرگاه دو نقطه یا دو کهکشان را انتخاب و آنها را دنبال کنیم، خواهیم دید که فاصله میان آنها به مقدار بیشینه‌ای می‌رسد و سپس دوباره به صفر میل می‌کند. چگالی جرم سبب می‌شود که فضا به روی خودش خمیده شود. بنابراین فریدمن پی برد که اگر جهان در زمان بسته باشد (یعنی اگر جهان باز رُمبش کند) آنگاه در فضا نیز بسته خواهد بود (یعنی حجم معینی خواهد داشت). مثل فاصله بین دو کهکشان دلخواه، پیرامون جهان از صفر شروع می‌شود، به مقدار بیشینه می‌رسد و دوباره به صفر کاهش می‌یابد.
دسته‌ی دوم جواب که فریدمن در دومین مقاله خود (که در سال ۱۹۲۴ به چاپ رسید) آنها را شرح داده است، مدل‌های جهان باز نام دارند. این جواب ها مدل‌های در حال انبساطی هستند که چگالی جرم کم است به طوری که میدان گرانشی آنقدر ضعیف است که نمی‌تواند از انبساط جلوگیری کند. آنگونه که شکل ۱ نشان می‌دهد ، فاصله بین دو کهکشانی که به دلخواه انتخاب شده‌اند از صفر شروع می‌شود و سپس مدام افزایش می‌یابد. با گذشت زمان، سرعت فاصله گرفتن دو کهکشان از هم در مقدار ثابتی پایدا می‌ماند.
فضای جهان بسته روی خودش خمیده می‌شود و فضایی متناهی به وجود می‌آورد، حال آنکه خمیدگی جهان باز از خودش دور می‌شود و فضایی نامتناهی ایجاد می‌کند. شکل۲(a) نشان می‌دهد که فضای بسته را می‌توان با سطح کره نمایش داد و شکل ۲(b) نشان می‌دهد که فضای باز را می‌توان به شکل زین نمایش داد. با این حال کره و زین شرایط یکسانی ندارند. سطح کره نمایش دقیقی از فضای بسته است در صورتی که زین تقریبی از فضای باز است که تنها در مرکز زین معتبر است. بنابراین اگر مدل کیهانشناختی در زمان باز باشد (یعنی باز رُمبش نکند) معادلات فریدمن حکایت از این خواهد داشت که در فضا نیز باز هست (یعنی حجم نامتناهی دارد).

سرانجام حالتی است که درست مرز بین مدل‌های بسته و باز جهان است. فریدمن این حالت را به صراحت شرح نداد اما می‌توان آنرا به عنوان حالت حدی جواب‌های جهان بسته یا باز بدست آورد. یعنی این حالت مرزی را می‌توان با به حداقل رساندن چگالی جرم جهان بسته یا به حداکثر رساندن چگالی جرم جهان باز تعیین کرد. چگالی جرمی که جهان را در مرز بین انبساط ابدی و رُمبش نهایی قرار می‌دهد، چگالی بحرانی نام دارد. در این حالت فضا نه بسته و نه باز بلکه اقلیدسی است. به همین دلیل چنین جهانی تخت نامیده می‌شود و مثل جهان باز حجم نامتناهی است. در جهان تخت تحول زمانی مانند مدل‌های باز است، از این نظر که جهان از اندازه صفر آغاز می‌شود و بدون محدودیت رشد می‌کند. با وجود این، اختلاف بین این دو در رفتار سرعت جدایی بین دو کهکشان با گذشت زمان است. در مورد باز، سرعت در مقدار غیرصفری ثابت می‌ماند در حالی که در مورد تخت، سرعت به سمت صفر میل می‌کند اما با گذشت زمان هرگز به آن نمی‌رسد. شکل۱ تحول زمانی مدلهای تخت را نشان میدهد. در همه‌ی مدل‌هایی که ثابت کیهان شناختی ندارند فاصله ی بین دو کهکشانی که به دلخواه انتخاب شده اند از صفر آغاز می‌شود و سپس افزایش می یابد. فریدمن پیامدهای این کنجکاوی ریاضیاتی را شرح نداد که به این معنی بود که همه ی ماده ی موجود در جهان از حالت تراکمی بی نهایت آغاز شده است. در دهه‌ی ۱۹۴۰ فرد هویل عبارت انفجار بزرگ را بر سر زبانها انداخت. با وجود این خود فرید من هیچ عنوانی به این فرضیه ی شگرف درباره ی منشأ جهان هستی نداد.
🆔 @Physics3p

جهان تورمی نوشته آلن گوث، انتشارات مازیار

Читать полностью…

Quantum Physics

🔹 قضیه نوتر
(برای میدان‌ها)

🆔 @Physics3p
قضیه نوتر (برای ذرات)

Читать полностью…

Quantum Physics

🔶 نظریه کالوزا-کلاین

اينشتين پس از نسبيت خاص دنبال نظريه جامعتری بود كه علاوه بر چارچوب های لخت، چارچوب های شتابدار را نيز در بر بگيرد. نتيجه‌ی تلاش ١٠ ساله او نظريه نسبيت عام بود كه گرانش را توصيف میكرد و گرانش عمومی نيوتن حالت خاصی از آن بود. نسبيت عام، گرانش را ناشی از هندسه فضازمان می‌داند. ماده و انرژی موجب خمش فضازمان شده و ما آنرا به شكل نيروی گرانش احساس می‌كنيم.
پس از اين اينشتين تلاش كرد تا الكترومغناطيس را هم اين‌چنين توصيف و گرانش را با آن متحد كند. البته پيش از او فيزيكدان فنلاندی گونار نوردشتروم با اضافه
كردن يک بعد مكانی سعی بر متحد ساختن نيروهای الكترومغناطيسی و گرانش كرده بود. منبع الهام او نسبیت خاص بود، با در نظر گرفتن ساختار ۴بعدی فضازمان، الکتریسیته و مغناطیس که در ۳بعد فضا دو مقوله متفاوت بودند، متحد می‌شوند. نوردشتروم نظريه‌ای ۵بعدی ساخته بود كه اتحاد بين گرانش و الکترومغناطیس را برقرار می‌كرد اما با شكست مواجه شد.
پس از آن در سال ١٩١٩ كالوزا نسبيت عام را در ۵بعد نوشت و معادلات ماكسول را از آن بدست آورد. از نظر كالوزا، عالم استوانه‌ای ۵ بعدی بود و جهان ۴ بعدی ما تصويری روی سطح آن. پس از آن كلاين نيز روی نظريه كالوزا كار كرد و اين ايده را مطرح كرد كه بعد مكانی اضافه در نظريه كالوزا، به شكل يک دايره‌ی بسيار كوچک پيچيده شده است.اين بعد اضافه ويژگی های نيروی الكترومغناطيس را مشخص می‌كرد.

اينشتين نيز كوشيد تا با استفاده از نظريه كالوزا- كلاين نظريه ميدان واحد خود را تكميل كند اما تلاش او بی ثمر ماند. هرچند نظريه كالوزا-كلاين موفق نشد و توصيف صحيحی از طبيعت نداشت اما روش رياضی آن برای فيزيكدانان مفيد بود.

🆔 @Physics3p

Читать полностью…

Quantum Physics

▫️ اسکالر، بردار و اسپینور

هرکدام از این کمیت‌های فیزیکی طبق قانون تبدیلشان تعریف می‌شوند. اسکالر ها تحت تبدیل بدون تغییر می‌مانند. بردار ها قانون تبدیل خاص خود را دارند. اسپینور ها موجودات دیگری هستند که تبدیلشان با بردار ها متفاوت است و نوع دیگری از کمیت ها را تعریف می‌کنند.
اسپینور ها دو نوع هستند، راست-کایرال و چپ-کایرال. تبدیلات چرخش این دو نوع یکسان است اما بوست (boost) آنها تفاوت اندکی دارد (در حد یک علامت منفی). ترکیب این دو، اسپینور دیراک نام دارد. اسپینور دیراک را به دلیلی مشابه با چهار-بردار های فضازمان تعریف میکنیم. تحت تبدیلات لورنتس مختصه‌های فضا و زمان در هم آمیخته می‌شدند و ما موجودی به نام چهار-بردار که شامل مختصه های فضایی و زمانی میشد تعریف میکردیم. اسپینور های راست-کایرال و چپ-کایرال نیز تحت تبدیلات پاریته در هم آمیخته می‌شوند و اسپینور های دیراک که ترکیب این دو نوع اسپینور است را تعریف میکنیم.

مانند میدانهای اسکالر و برداری، میدانهای اسپینوری نیز تعریف می‌شوند.
🔹 میدانهای اسکالر، کوانتوم های اسکالر یا اسپین-صفر دارند مانند میدان هیگز که کوانتوم آن یعنی ذره هیگز اسپین صفر دارد.
🔸 میدانهای برداری کوانتوم هایی با اسپین ۱ دارند مانند میدان الکترومغناطیس که کوانتوم آن یعنی فوتون ها، اسپین ۱ دارند.
🔹 و در نهایت، میدانهای اسپینوری کوانتوم‌هایی با اسپین ۱/۲ دارند مانند میدان الکترون که کوانتوم های آن اسپین ۱/۲ دارند.

🆔 @Physics3p

Читать полностью…

Quantum Physics

🔸 معادله کلاین-گوردون
🆔 @Physics3p

•طی نوشتاری دیگر به معادله دیراک نیز می‌پردازیم.

Читать полностью…

Quantum Physics

تحول زمانی هر کمیت مشاهده پذیر در مکانیک کلاسیک را می‌توان به صورت معادله ۱ نوشت. عبارت {f,H} کروشه پواسون f و هامیلتونی است.
تابع موج، حالت فیزیکی یک سیستم را کاملاً معین می‌کند. یعنی اگر این تابع مشخص باشد می‌توان ویژگی های سیستم را در آن لحظه و لحظات آینده تعیین کرد. بنابراین تحول زمانی تابع موج باید توسط خود تابع در آن لحظه تعیین شود. از طرفی طبق اصل برهمنهی این رابطه باید خطی باشد. (معادله۲) عملگر H را عملگر هامیلتونی می‌نامند (به دلیل آن پی خواهید برد).

می‌توان ثابت کرد که تحول زمانی هر مشاهده پذیر در مکانیک کوانتوم را میتوان به صورت معادله ۳ نوشت. [f,H]=fH–Hf عملگر جابه‌جاگر نام دارد.
احتمالاً شما نیز به یک تناظر زیبا بین عملگر جابه‌جا گر در مکانیک کوانتوم و کروشه پواسون مکانیک کلاسیک پی برده اید و علت آنکه عملگر H را هامیلتونی می‌نامند را متوجه شدید.
رابطه بین کروشه پواسون و عملگر جابه‌جاگر به صورت معادله ۴ است.

🆔 @Physics3p

Читать полностью…

Quantum Physics

📚 کتاب فیزیک مدرن در ۱۵ دقیقه

نوشته‌ی یوھان ھانسون
مترجم: داریوش شیری
🆔 @Physics3p

Читать полностью…

Quantum Physics

🔹اصل طرد پاولی و چگالش بوز–اینشتین

در کوانتوم عملگرهایی به نام خلق و فنا وجود دارد که عملگر خلق، یک پیکربندی nذره‌ای را به (n+1)ذره‌ای و عملگر فنا، پیکربندی nذره‌ای را به (n–1)ذره‌ای می‌برد. بنابراین با اعمال n بار عملگر خلق می‌توان پیکربندی‌ با n ذره تولید کرد و برعکس با اعمال متوالی عملگر فنا می‌توان سیستمی از ذرات را به حالت خلأ برد.
دو ذره بنیادی را در نظر بگیرید که در مکان ۱ و ۲ قرار دارند. عملگری به نام P تعریف می‌کنیم که جای این دو ذره را با یکدیگر عوض می‌کند. اگر این عمگر را دو بار اعمال کنیم باید به حالت اولیه برسیم یعنی P²=1 بنابراین برای P دو انتخاب 1 و 1- داریم. P=1 ذراتی را توصیف می‌کند که می‌توانیم بدون ایجاد تغییری جایشان را باهم عوض کنیم. عملگر خلق این ذرات با یکدیگر جابه‌جا می‌شوند (ab=ba). طبق این رابطه، می‌توان بدون هیچ مشکلی این ذرات را در یک نقطه انباشته کرد که به آن چگالش بوز-اینشتین می‌گویند. این رفتار مربوط به بوزون ها یا همان ذرات حامل نیروست. P=-1 مربوط به ذراتی است که عملگرهای خلق آن پادجابه‌جا هستند (ab=-ba). این ذرات را طبق این رابطه نمی‌توان در یک حالت جای داد که مربوط به فرمیون ها یا همان ذرات مادی است که از اصل طرد پاولی پیروی می‌کنند.
اگر این قانون برای فرمیون ها وجود نداشت، هیچ اتم، مولکول و در نهایت هیچ ساختار مادی وجود نداشت.

🆔 @Physics3p

Читать полностью…

Quantum Physics

🔹 معادله میدان اینشتین

برای بیان خمیدگی به زبان ریاضی از انتقال یک بردار به شکل موازی در یک حلقه بسته استفاده می‌کنیم. انتقال به صورت موازی یعنی انتقال بدون تغییر جهت و اندازه. مسیر انتقال موازی همان ژئودوزیک ها هستند. با توجه به اینکه تغییرات بردار در مسیر ژئودوزیک مولفه‌ی مماسی ندارد می‌توانیم مطمئن شویم که انتقال به صورت موازی انجام می‌شود.
در یک فضای تخت، هنگامی که برداری به صورت موازی روی یک حلقه بسته حرکت کند، در نهایت بردار اولیه و بردار انتقال یافته بر هم منطبق خواهند شد. اما در یک فضای خمیده چنین اتفاقی نمی‌افتد. هرچه زاویه بین بردار اولیه و انتقال یافته بیشتر باشد، نشان از این است که خمیدگی سطح بیشتر است. بنابراین روش خوبی برای سنجیدن خمیدگی موضعی سطح می‌باشد.
حاصل محاسبات به این روش، موجودی به نام تانسور ریمان است که بیان کننده میزان خمیدگی سطح می‌باشد.
تانسور ریچی که از تانسور ریمان ساخته می‌شود، تانسوری رتبه ۲ است که با ادغام آن، اسکالری به نام اسکالر انحنا بدست می‌آید.
معادله درون تصویر، معادله میدان اینشتین است. طرف چپ معادله به ترتیب تانسور ریچی، اسکالر انحنا و تانسور متریک، و طرف راست عدد ثابتی همراه تانسور انرژی-تکانه قرار دارد.
این معادله دینامیک فضازمان را نشان می‌دهد. در یک سمت معادله ویژگی های هندسی فضا زمان و در سمت دیگر جرم و انرژی.
بعد ها اینشتین به این معادله ثابت کیهانشناسی را اضافه کرد تا از انبساط (یا انقباض) کیهان جلوگیری کند. هرچند این جمله مشکل را برطرف نمی‌کرد. بعدها هابل اثبات کرد که کیهان در حال انبساط است. از این جمله در بعضی مدل های کیهانشناسی استفاده می‌شود.

🆔 @Physics3p

Читать полностью…

Quantum Physics

🖥اگه اسم کامپیوتر کوانتومی، یادگیری ماشین کوانتومی (QML) و یا اینترنت کوانتومی رو شنیدین این کانال برای شما بهترین انتخابه!

☄️کانال "کیوپدیا | QuPedia" کامل‌ترین مرجع فارسی در •علوم و فناوری های کوانتومی•‌☄️
مهندسی کوانتوم جدید ترین گرایش فیزیک، برق و کامپیوتر درچندسال اخیر بوده و به سرعت توی دنیا در درحال رشده

⭐️مناسب برای دانشجوهای:
📌فیزیک، برق، کامپیوتر، و ریاضی کاربردی،و سایر رشته های مهندسی(مواد، مکانیک، شیمی و... )

🔖آدرس کانال🔖
🚀@QuPedia
🚀@QuPedia
🚀@QuPedia

Читать полностью…

Quantum Physics

نظریه ریسمان به زبان ساده

🆔 @physics3p

Читать полностью…

Quantum Physics

در پست «ماکسول چه کرد؟» توضیح دادیم که معادلات ماکسول موجی را پیش بینی می‌کرد که سرعتی برابر با سرعت نور داشت. تا پیش از این، امواج مکانیکی شناخته شده بودند. تمامی این امواج برای منتشر شدن نیاز به محیطی مادی داشتند که نوسانات پیوسته اجزا آن محیط، انرژی موج را منتقل می‌کرد. بنابراین طبیعی بود که ماکسول به دنبال محیطی برای انتشار امواج الکترومغناطیس باشد. او این محیط فرضی را اتر نامید. اتر محیطی بود که نوسانات اجزا آن انرژی امواج الکترومغناطیس را منتقل می‌کرد و کل فضا را پوشانده بود. پس از آن فیزیکدانان تجربی سعی کردند سرعت رانش زمین درون اتر را اندازه‌گیری کنند. اگر اتر واقعاً وجود داشت چارچوبی مطلقاً لَخت بود. با توجه به اینکه چارچوب های لخت برای فیزیکدانان اهمیت خاصی دارد، نیاز بود که مقدار سرعت رانش زمین درون آن مشخص باشد از طرفی این آزمایشات می‌توانست تأییدی بر وجود اتر باشد. از معروفترین آزمایشاتی که با دقت بسیار بالایی در این زمینه انجام شد، آزمایش مایکلسون-مورلی بود. اما نتایج آزمایش فرضیه اتر را تأیید نمی‌کردند. البته فیزیکدانان به همین سادگی اتر را رها نکردند و برای توجیه نتیجه آزمایش مایکلسون-مورلی تلاش خود را کردند. يكی از اين توجيه ها توسط فيتز جرالد مطرح شد: جسم در راستای حركت خود درون اتر منقبض می‌شود. پس از آن لورنتس نظريه جرالد را تكميل كرد. فرضيه ديگری كه مطرح شد، فرضيه كشش اتری بود كه بنا به آن فرض می‌شد اتر همراه اجسامی که درون آن حرکت می‌کنند کشیده می‌شود. تا اينكه اينشتين با اصل ثابت بودن سرعت نور گره را گشود و نظريه‌ای كه به آن نسبيت خاص می‌گويند را پايه ريزی كرد.

🆔 @physics3p

Читать полностью…

Quantum Physics

❓چرا سرعت نور ثابت است؟

امواج مکانیکی مانند موجی که در طناب منتشر می‌شود یا مانند امواج صوتی یا امواج آب و ... همگی نیاز به محیطی برای انتشار دارند. برای نمونه، صوت بدون وجود مولکول های هوا توانایی منتشر شدن ندارد. همین موضوع باعث می‌شود تفاوتی میان ناظر ساکن نسبت به محیط انتشار موج و ناظر های دیگر وجود داشته باشد. ناظر ساکن نسبت به محیط انتشار، سرعت و معادله‌ای خاص برای موج و ناظران دیگر هرکدام سرعت‌ها و معادله‌های متفاوتی برای این امواج بدست می‌آورند. در واقع ناظران متحرک، خود را نسبت به محیط انتشار می‌سنجند و جملاتی را به معادلات خود اضافه می‌کنند.

اما موضوع در مورد امواج الکترومغناطیس فرق می‌کند. این امواج نیازی به بستری برای انتشار ندارند. این یعنی چارچوبی خاص برای مشاهده این گونه امواج، برخلاف امواج مکانیکی، وجود ندارد. بنابراین مرجعی (محیط انتشار موج) نیست که ناظران بتوانند خود را نسبت به آن بسنجند و تفاوتی را در سرعت نور احساس کنند. به همین دلیل سرعت نور برای تمامی ناظران (لَخت) ثابت است.

🆔 @Physics3p

Читать полностью…

Quantum Physics

– طبق ایده دوبروی طول موج وابسته به ذرات مادی از نسبت ثابت پلانک به تکانه ذره بدست می‌آید. (λ=h/p)

– طبق یکی از اصول بور، مدار هایی در اتم هیدروژن مجاز هستند که تکانه زاویه‌ای آنها طبق رابطه L=nh/2π کوانتیده باشد. با استفاده از ایده دوبروی این رابطه را می‌توان اینطور توجیه کرد:

اگر فرض کنیم در هر مدار مجاز، موج دوبروی وابسته به الکترون باید با خودش هم فاز باشد، یعنی موج الکترون محیط دایره‌ای شکل را بپوشاند، باید طول مدار مضرب صحیحی از طول موج باشد یعنی 2πr=nλ . ادامه محاسبات به شکل زیر انجام می‌شود:

2πr=nλ=nh/p => pr=L=nh/2π

🆔 @Physics3p

Читать полностью…

Quantum Physics

🌐 این کانال در حوزه " علوم ریاضی " در سطوح دانشگاهی با محوریت آموزش و پژوهش فعالیت می کند.

🔹 موضوعات:

• ریاضی محض
• ریاضی کاربردی
• آموزش ریاضیات
• پژوهش در ریاضیات


° دانشگاه علم و صنعت ایران °

🌐 t.me/mathematics_learn

Читать полностью…

Quantum Physics

🔹 تحول زمانی بردار حالت (معادله شرودینگر)

🆔 @Physics3p

Читать полностью…

Quantum Physics

🔹 قضیه ارنفست

مقادیر چشم‌داشتی در مکانیک کوانتوم از قوانین مکانیک کلاسیک پیروی می‌کند.

🆔 @Physics3p

Читать полностью…

Quantum Physics

No-nonsense Quantum Field Theory
Jakob Schwichtenberg


🆔 @Physics3p

Читать полностью…

Quantum Physics

🔹 قضیه نوتر
(برای ذرات)

🆔 @Physics3p

• اگر موافق نوشتار قضیه نوتر برای میدانها هستید 👍 کنید.

Читать полностью…

Quantum Physics

معادله شرودینگر برای توصیف ذرات در قلمرو نسبیت خاص اعتبار نداشت. زیرا زمان و مکان به صورت متقارن در این معادله حضور نداشتند. مشتق نسبت به زمان از مرتبه یک و نسبت به مکان از مرتبه دو بود. (معادله ۱)
دو راه برای نسبیتی کردن مکانیک کوانتوم وجود داشت یا باید مشتق زمان نیز از مرتبه دو می‌شد یا مشتق مکان از مرتبه یک. علاوه بر این، باید با معادله انرژی-تکانه نسبیتی نیز سازگار می‌بود.
مسیر اول به معادله معروف کلاین گوردون (معادله۲) و مسیر دوم به معادله دیراک (معادله۳) منجر می‌شود.
معادله کلاین گوردون ذرات با اسپین صفر و معادله دیراک ذرات با اسپین 1/2 مانند الکترون و پروتون را توصیف می‌کند.

🆔 @Physics3p

Читать полностью…

Quantum Physics

با نوشتن قانون دوم نیوتن در مختصات عمومی q(x,y,z) می‌توان معادلات حرکت لاگرانژ را بدست آورد. (معادله۱)
این معادله با می‌نیمم کردن تابع کنش S بدست می‌آید. (معادله۲) که به آن اصل حداقل کنش گفته می‌شود. این معادله ساده کل مکانیک کلاسیک را در بر دارد و علاوه بر ذرات با استفاده از آن می‌توان میدانها را نیز توصیف کرد.
اصل کمترین کنش بیان می‌کند که در بین بینهایت مسیر بین دو نقطه، ذره کلاسیکی مسیری را انتخاب می‌کند که در آن کنش کمینه باشد.
فاینمن با ایده گرفتن از اصل کمترین کنش مکانیک کلاسیک، فرمول‌بندی مکانیک کوانتوم را با انتگرال مسیر انجام داد. جنس احتمالاتی مکانیک کوانتوم موجب می‌شود که تمام مسیرهای بین A و B ممکن باشد و به هرکدام احتمالی اختصاص می‌یابد.
جالب آنکه مسیر کلاسیکی که از اصل کمترین کنش بدست می‌آید، مسیری است که در مکانیک کوانتوم محتمل‌ترین است.

🆔 @Physics3p

Читать полностью…

Quantum Physics

۱۶۰۰ سال پیش از آگوستین قدیس پرسیدند که «زمان چیست؟» او در پاسخ چنین گفت «اگر کسی از من این سوال را نکند جواب آن را می‌دانم اما اگر بخواهم جواب آن را بدهم نمی‌دانم.»

اسرار فیزیک مدرن: زمان
شون کارول


🆔 @Physics3p

Читать полностью…

Quantum Physics

تقارن و ابر تقارن

در فیزیک هنگامی که گفته می شود یک سیستم تقارن دارد که ویژگی های آن، در نتیجه ی برخی از تبدیلات مثل چرخش در فضا و یا تصویر آینه ای خود، بدون تغییر بماند.

برای مثال اگر یک دونات را بچرخانیم به همان شکل اول دیده خواهد شد. اما ابر تقارن نوع دقیق تری از تقارن است که نمی توان آن را با تبدیل معمولی فضا، معادل دانست. یکی از تعابیر مهم ابر تقارن این است که ذرات نیرو و ماده و در نتیجه خود نیرو و ماده،در حقیقت تنها دو شکل مختلف از یک چیز هستند.

این به آن معناست که هر ذره ای از ماده برای مثال کوارک دارای یک همزاد به صورت ذره ای از نیرو می باشد. همین طور هر ذره ی نیرو مثل فوتون، دارای همزادی به صورت ذره ی مادی است. مفهوم ابر تقارن توانست مشکل مقادیر نامتناهی را در مدل استاندارد حل کند.

بنابراین در تئوری ریسمانها تبدیلاتی وجود دارد که طبق آن جای فرمیونها و بوزونها عوض می شود، اما با این تبدیلات نباید معادلات فیزیکی تغییر کنند، مسئله ی ابر تقارن در تئوری ریسمانهاء نقشی بسیار عمده بازی می کند. به این ترتیب که ادعا می شود برای هر ذره ی اتمی، یک ذره ی مشابه به نام ذره ی اس وجود دارد.(S ذره)

مسئله ی تقارن یا ابر تقارن می گوید برای هر ذره ای، ذره ی دیگری وجود دارد که همه چیز آن مانند ذره ی اولی است، به جز اینکه اسپین یا گردش داخلی آن ذره متفاوت است.

این چرخش درونی به نوبه ی خود به دو صورت می باشد، بسته به این که عدد اسپین صحیح باشد یا کسری، یا بوزون است یا فرمیون. برای مثال فوتون و ذره ی هیگز بوزون می باشند، اما الكترون یا کوارک فرمیون هستند.

به عبارتی مهم تر ابر تقارن ارتعاشات کوانتومی را رام می کند. بی نهایت ها حذف می گردند. ابر تقارن در نظریه ی ریسمانها به خوبی جای می گیرد و تمام نتایجی که در انرژی های بالاتر از تئوری ریسمانها گرفته می شود، نشان می دهد که این ابر تقارن بایستی وجود داشته باشد.

اما زمانی که انرژی پایین است، این ابر تقارن شکسته می شود، و هنگامی که ابر تقارن می شکند آن وقت ذراتی که جفت بودند می توانند پس از جدا شدن (شکسته شدن ابر تقارن) دارای جرم های مختلفی شوند. امید است در آزمایش سرن بتوان برای ذرات، جفت ابر تقارنی آنها را پیدا کرد.

🆔️ @physics3p

Читать полностью…

Quantum Physics

🔸 طول پلانک

میخواهیم ناحیه بسیار کوچکی از فضا را مشاهده کنیم. برای این کار ذره ای را به عنوان نشانه در این ناحیه قرار می‌دهیم. اما طبق اصل عدم قطعیت هایزنبرگ، هرچه این ناحیه را کوچکتر کنیم ذره با سرعت بیشتری می‌گریزد. بنابراین ذره انرژی بیشتری خواهد داشت. طبق نسبیت عام، انرژی بیشتر به معنای انحنای بیشتر فضازمان است. انرژی زیاد در ناحیه کوچکی از فضا به معنای آن است که فضا آنقدر خمیده خواهد شد که مانند ستاره‌ای در حال فروپاشی به یک سیاهچاله بدل می‌شود.... بنابراین نمی‌توانیم ناحیه‌های فضا را به اندازه دلخواه کوچک در نظر گرفت زیرا در این صورت در سیاهچاله‌ای محو خواهند شد. می‌توان نتیجه گرفت تقسیم پذیری فضا نیز محدودیت دارد. کمتر از مقیاسی مشخص نمی‌توان به چیزی دست یافت.
و اما کمینه این ناحیه از فضا چقدر است؟
این مقدار کمینه را که ماتوی برونشتین محاسبه‌ کرد، طول پلانک می‌نامند و از رابطه درون تصویر محاسبه می‌شود. مقدار آن تقریباً (33–)^10 سانتی متر است.
در این ابعاد است که گرانش کوانتومی خود را نشان می‌دهد.

📚 برگرفته از کتاب روی دیگر حقیقت نوشته کارل روولی

🆔 @Physics3p

Читать полностью…

Quantum Physics

هرگاه بخواهیم کوتاهترین مسیر بین دو نقطه را در فضایی مشخص طی کنیم، باید در راستای ژئودوزیک ها حرکت کنیم. ساده ترین مثال این موضوع خط راست است. در فضای اقلیدسی خط راست کوتاهترین مسیر بین دو نقطه را نشان می‌دهد.

برای بدست آوردن معادله ژئودوزیک می‌توان به این صورت عمل کرد:

ابتدا یادآوری کنم که ضرب داخلی دو بردار مانند u و w در فضایی با متریک g با معادله ۱ بدست می‌آید. برای بدست آوردن عنصر طول ds برحسب پارامتر t از ضرب داخلی بردار سرعت استفاده می‌کنیم. (معادله ۲)
با استفاده از حساب وردش ها می‌توان می‌نیمم طول مسیر بین دو نقطه را با کمینه کردن انتگرال ۳ بدست آورد.
پس از استفاده‌ از فرمول اویلر معادله ژئودوزیک حاصل می‌شود. (معادله۴)

🔹 اگر به قانون دوم نیوتن که به صورت هموردا در «این پست» نوشته شده است دقت کنید متوجه خواهید شد در حالتی که نیروهای وارد بر جسمی صفر باشد معادله مسیر آن همان معادله ژئودوزیک است. بنابراین می‌توان نتیجه گرفت جسم آزاد در راستای ژئودوزیک ها حرکت می‌کند.

🆔 @Physics3p

Читать полностью…

Quantum Physics

از آنجایی که ساز و کار دنیای فیزیکی از قرارداد های ریاضی ما مستقل هستند، باید بتوان قوانین فیزیک را به شکل ناوردا برای یک دستگاه مختصات عام نوشت. بنابراین لازم است شکل تبدیل کمیت‌های فیزیکی بین دو دستگاه را بدانیم. برای مثال قانون دوم نیوتن در دستگاه دکارتی به صورت F=ma نوشته می‌شود. این معادله در شکل هموردای خود در تصویر آمده است. با توجه به دستگاه مختصاتی که اختیار می‌کنیم، x ها و ضریب کریستوفل که با گاما نشان داده شده است، تعیین می‌شوند. x با بالانویس i مختصه های دستگاه مختصات عام هستند. برای مثال در دستگاه دکارتی این x ها همان مختصه‌های x,y,z هستند یا در دستگاه استوانه‌ای r,θ,z هستند. همچنین F با بالانویس i مولفه‌های نیرو را در راستای x ها نشان می‌دهد.

بدین ترتیب با توجه به نوع تبدیل کمیت‌های فیزیکی را به سه دسته‌ی اسکالر، بردار و تانسور تقسیم می‌کنیم. اسکالر ها کمیت هایی هستند که با تبدیل دستگاه تغییری نمی‌کنند مانند جرم. جرم یک سیب چه در دستگاه S چه در ′S یکسان است. بردار ها به دو دسته‌ی کواریانت و کنترواریانت تقسیم می‌شوند که هرکدام شیوه تبدیل خاص خود را دارند. تانسور ها از ترکیب این بردارهای کواریانت و کنترواریانت ساخته می‌شوند. جالب است بدانید که تانسور ها تا پیش از نسبیت عام صرفاً موجودات ریاضی محض بدون کاربرد بودند. با ظهور نسبیت عام تانسورها به فیزیک وارد شدند و کاربرد گسترده‌ای یافتند. البته ریاضیدانان تانسور ها را به این شکل تعریف نمی‌کنند.
🆔 @Physics3p

Читать полностью…

Quantum Physics

ماکسول چه کرد؟

آمپر به صورت تجربی رابطه‌ای بین چگالی جریان الکتریکی و میدان مغناطیسی یافته بود. چگالی جریان الکتریکی به صورت نسبت جریان به مساحت سطحی که از آن عبور می‌کند، تعریف می‌شود. اما یک ایراد ریاضیاتی در این رابطه وجود داشت که ماکسول آنرا با افزودن یک جمله به معادله رفع کرد. اما مفهوم این جمله چه بود و چه اهمیتی داشت؟

این جمله‌ی اضافه شده، جریان جابه‌جایی نام دارد و شامل تغییرات میدان الکتریکی در زمان است. معادله‌ی تصحیح شده، نمایانگر اتحادی میان الکتریسیته و مغناطیس بود. یک میدان الکتریکی متغیر با زمان می‌تواند میدانی مغناطیسی ایجاد کند. از طرفی، محاسبات نشان می‌داد که میدان مغناطیسی متغیر با زمان نیز، میدانی الکتریکی تولید می‌کند و این چنین پیوند بین الکتریسیته و مغناطیس تکمیل شد. الکتریسیته و مغناطیس که دو مقوله‌ی جدا از هم پنداشته می‌شدند، توسط این معادلات در هم تنیده شدند.
علاوه بر این، معادلات ماکسول موجی را پیش بینی می‌کرد که سرعتی برابر با سرعت نور داشت. سرعت نور پیش از این به صورت تجربی اندازه‌گیری شده بود و بر این اساس ماکسول نتیجه گرفت که نور باید نوعی موج الکترومغناطیس باشد.
🆔 @Physics3p

Читать полностью…

Quantum Physics

چند سال است در این کانال در مورد عجایب و زیبایی های مکانیک کوانتومی و نسبیت صحبت می‌کنیم. شاید برای تنوع خوب باشد که به یکی از مباحث زیبای مکانیک کلاسیک بپردازیم.

یکی از روشهای هم ارز با معادلات نیوتن، معادلات لاگرانژ است. لاگرانژی یک سیستم به صورت L=T–V تعریف می‌شود. در این رابطه T انرژی جنبشی و V انرژی پتانسیل می‌باشد. با حل معادلات لاگرانژ برای یک سیستم می‌توان معادله حرکت آنرا بدست آورد. جذابیت مسئله از جایی شروع می‌شود که پایستگی ها نتیجه‌ی تقارن ها هستند.
با استفاده از تعریف تابع لاگرانژی می‌توان ثابت کرد:

۱) تقارن تحت انتقال در مکان موجب پایستگی تکانه خطی می‌شود. به بیان دیگر طبق اصل همگنی فضا، تمامی نقاط فضا هم ارز با یکدیگر هستند و هیچ نقطه‌ی ارجحی وجود ندارد. با در نظر گرفتن این شرایط، از تعریف لاگرانژی سیستم نتیجه می‌شود که تکانه خطی پایسته است.

۲) تقارن تحت دوران موجب پایستگی تکانه زاویه‌ای می‌شود. این تقارن تحت دوران همان همسانگردی فضاست.

و در آخر:

۳) همگنی زمان یا تقارن تحت انتقال در زمان، هامیلتونی را به عنوان ثابت حرکت یا همان کمیت پایسته نتیجه می‌دهد که در شرایط خاصی هامیلتونی با انرژی برابر است یعنی H=T+V=E. یعنی پایستگی انرژی ناشی از همگنی زمان است.

🆔 @Physics3p

Читать полностью…

Quantum Physics

مدل استاندارد فیزیک ذرات، چهار نیروی بنیادی طبیعت را به صورت میدان هایی که از قوانین نظریه‌ی پیمانه‌ای تبعیت می‌کنند، بیان می‌کند. نظریه‌ی پیمانه‌ای براساس تقارن های ریاضی ساخته شده است. از آنجا که این نیروها نظریه هایی کوانتومی هستند، میدانهای پیمانه ای به صورت واحدهای گسسته ظاهر می‌شوند و معلوم شده که این واحد ها در واقع ذراتی به نام بوزون های پیمانه‌ای هستند. نیروهایی که با نظریه پیمانه‌ای توصیف می‌شوند توسط این بوزون ها حمل شده، یا به عبارت دیگر بوزون ها ذرات واسطه‌ای آن هستند.

هنگامی که گرانش به صورت یک نظریه پیمانه‌ای نوشته شود، بوزون پیمانه‌ای آن گراویتون نام دارد. یکی از بزرگترین موفقیت های نظریه ریسمان، کشف اجسامی در این نظریه بود که با ویژگی های گراویتون مطابقت داشت. این اجسام نوع خاصی از ریسمان های بسته اند که ذراتی بدون جرمند و دقیقاً اسپنی برابر با ۲ دارند. این ذرات در نظریه ریسمان با نوعی ریسمان بسته‌ی مرتعش نمایش داده می‌شوند. جالب اینکه، نظریه ریسمان برای داشتن گراویتون ها طراحی نشده بود بلکه آنها خود به خود نتیجه‌ی طبیعی نظریه هستند.

🆔 @Physics3p
منبع: نظریه ریسمان، جونز و رابینز

Читать полностью…

Quantum Physics

دو ناظر A و B که هرکدام داخل محفظه‌ای که هیچ ارتباطی با فضای بیرون ندارد را در نظر بگیرید. ناظر A روی زمین و تحت تاثیر جاذبه‌ی آن است و ناظر B در فضایی تهی به دور از هر منبع گرانشی قرار دارد. اگر اتاقک ناظر B با شتابی برابر با شتاب گرانشی زمین به سمت بالا کشیده شود، احساس هر دو ناظر یکی خواهد بود. یعنی نیرویی که هر دو ناظر بر پاهای خود حس می‌کنند یکسان و آزمایش های مکانیکی برای هردو، نتایج یکسانی خواهد داشت.
این امر ناشی از برابری جرم لختی و جرم جاذب است. یعنی جرمی که در رابطه F=ma وجود دارد همان جرمی است که در رابطه GmM/r² نیز هست. اگر دقت کنید نقش m در قانون F=ma ، لختی و در قانون گرانش چشمه تولید جاذبه است.
این ایده ما را به سمت نظریه نسبیت عام سوق می‌دهد. ما با استفاده از این ایده میتوانیم اثرات میدان گرانشی را مطالعه کنیم. اگر ما مسیر جریان فضازمان را برای یک پروسه‌ی طبیعی در چارچوب لَخت بدانیم با استفاده از محاسبات نظری می‌توانیم متوجه شویم که این پروسه در چارچوب شتابدار چگونه است. از طرفی چون در چارچوب شتابدار جاذبه وجود دارد (به دلیل شتاب چارچوب) از طریق محاسبات میتوانیم تأثیر جاذبه بر پروسه‌ی طبیعی مذکور را متوجه شویم.

📚 برگرفته از کتاب نظریه نسبیت خاص و عام نوشته‌ی آلبرت اینشتین

🆔 @Physics3p

Читать полностью…
Subscribe to a channel