46226
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
🚀 соревнование по переводу на тюркские языки на LoResMT'2026
Всем привет, только в понедельник писали о запуске нашего соревнования по машинному переводу на малоресурсные тюркские языки. А у нас уже две новости.
🔹 Все языковые пары доступны:
- русский - башкирский
- английский - чувашский
- русский - казахский
- английский - татарский
- русский - кыргызский
👑 У нас появился спонсор! Компания Selectel решила поддержать нас и выделила для победителей по 30000 бонусов на каждую языковую пару! Этого хватит на две недели аренды А100 в облаке Selectel.
🗓 Важные даты
- Прием решений: 1 декабря 2025 — 11 января 2026
- Подача описаний систем: до 27 января 2026
- Воркшоп: LoResMT (параллельно с EACL 2026, Марокко)
🔗 Готовы присоединиться?
https://ods.ai/tracks/turkic-lores-mt
Будем рады всем участникам! 🌍🗣️
❗️Пользователь: «Сегодня утром я скачал 🤖Antigravity и запустил его для отладки, а он удалил весь код!!!»
Как известно, Google недавно представила Antigravity как агентную платформу нового поколения на базе Gemini 3 с возможностью автономного выполнения задач в терминале и браузере.
Один из пользователей платформы Google Antigravity столкнулся с потерей данных после предоставления 🤖ИИ-агенту автономного доступа к командной строке Windows [1,2,3]. Инцидент привел к полной очистке раздела 💽жесткого диска из-за некорректной обработки пробелов в путях файлов. Была выполнена команда rmdir /s /q d:\ вместо удаления конкретной директории, которая уничтожила содержимое диска без возможности восстановления через корзину.
В ходе отладки ИИ-агент инициировал команду очистки директории node_modules, расположенной по пути с пробелами D:\ETSY 2025\Antigravity Projects.... Из-за отсутствия кавычек в сгенерированной команде интерпретатор Windows CMD воспринял аргумент как D:, отбросив остальную часть пути после первого пробела.
🧹 Команда rmdir /s /q d:\ рекурсивно удалила всё содержимое диска, минуя корзину.
🈁🤖 ИИ-агенты доказали возможность автономных атак на смарт-контракты, «заработав» $4.6 млн в симуляции
Исследователи Anthropic представили отчет об успешной эксплуатации уязвимостей смарт-контрактов моделями Claude Opus 4.5, Claude Sonnet 4.5 и GPT-5 в симулированной блокчейн-среде.
В ходе тестирования на специализированном бенчмарке SCONE-bench передовые ИИ-агенты продемонстрировали способность разрабатывать эксплойты для уязвимостей, реально эксплуатировались в период с 2020 по 2025 год..
1️⃣ В рамках симуляции атаки на 2849 недавно развернутых смарт-контрактах ИИ-сервисы обнаружили две ранее неизвестные уязвимости нулевого дня (0-day).
2️⃣ Автономная эксплуатация может быть рентабельной в реальных условиях: в экспериментах затраты на запуск ИИ-агентов в размере $3 476 были компенсированы разработанными ими в симулированной среде эксплойтами на сумму $3 694.
Для контрактов, которые были взломаны после марта 2025 года, модели Claude Opus 4.5, Claude Sonnet 4.5 и GPT-5 в условиях симуляции разработали эксплойты, совокупная смоделированная стоимость которых составила $4.6 млн.
DeepSeek ответил на GPT-5 и Gemini 3 Pro
Китайский стартап выпустил две новые открытые модели с мощными возможностями рассуждения — DeepSeek-V3.2 и усиленную DeepSeek-V3.2-Speciale, подтвердив, что Китай играет на равных с американскими лидерами.
По тестам разработчиков, модели достигают уровня GPT-5 и Gemini 3 Pro в программировании и математике.
Мой Компьютер
В Мехико жара — и это мы сейчас не о погоде, а о NeurIPS
Продолжаем рассказывать о том, что происходит на полях конференции. Руководитель группы AI-планирования робота доставки Дмитрий Быков посетил любопытный воркшоп NORA: The First Workshop on Knowledge Graphs & Agentic Systems Interplay и поделился впечатлениями.
Авторы пытались решить проблему того, что способ запоминания знаний в языковых моделях через веса далеко не самый эффективный и создаёт много галлюцинаций. И даже поиск через интернет не спасает от артефактов — особенно на сложных запросах. Например, была проблема с вопросом обо всех женщинах Нобелевских лауреатах.
Разработали конкретные онтологии и способ извлечения знаний из них (graph ql и поиск по близости эмбеддингов). В целом, для конкретных даже сложных примеров это достаточно хорошо работало.
При этом проблема получения онтологий не из структурированных данных остаётся акутальной. Авторы возлагают большие надежды на обработку с помощью LLM, но пока так не делают.
Ещё решил послушать второй доклад по схожей теме. Тут в основном всё было сосредоточено на арабском языке.
Рассказали, как собирали онтологию — по сути, обучили BERT на ner и entity linking. Имели порядка 50 возможных отношений между объектами, часть из которых могла быть достаточно похожей. В итоге так заполнили онтологию, докинули в промпт ChatGPT значения и получили прирост по метрикам.
🌸 Хочешь устроиться в Яндекс за один уикенд?
Открыта регистрация на Weekend Offer ML — быстрый наймовый ивент Яндекса.
Пройди все этапы отбора за выходные и получи офер в одну из R&D‑команд: Alice AI LLM (YandexGPT), Яндекс Переводчика, Технологий компьютерного зрения, Голосового ввода, Синтеза речи и Яндекс Клавиатуры.
Кого мы ждём:
➡️ инфраструктурных и DL‑инженеров с опытом в NLP, CV, ASR или TTS;
➡️ тех, кто хочет работать над прикладными R&D задачами.
Как всё устроено:
1️⃣ до 9 декабря — регистрация и встреча с рекрутером;
2️⃣ 4 декабря в 19:00 — пройдет ознакомительная встреча с ответами на вопросы;
3️⃣ 13 декабря — всего две технические секции;
4️⃣ 14 декабря — финалы и офер.
✅ Регистрируйся до 9 декабря по ссылке
ML-инженер не обязан лететь на NeurIPS. Но может, если хочет. Я выберу того, кто хочет.
🎯 Забегай к нам на ML Global Recap 11 декабря, обсудим:
➖ NeurlPS
➖ CIKM и RecSys и тренды в рекомендательных технологиях
➖ ICLR и тренды в компьютерном зрении
➖ ICLR и ACL и тренды в NLP
➖ Interspeech и тренды в технологиях распознавания речи
Доклады и релевантный нетворк. Поскольку встреча для хардовых, обменяться опытом будет действительно интересно.
11 декабря | 18:00 | Москва и онлайн
🔗 Подробная программа и регистрация по ссылке.
Всем привет!
В двадцать втором выпуске подкаста "Капитанский мостик"обсуждаются актуальные темы, такие как чипирование голубей, этические вопросы в науке и технологиях, влияние киберпанка на будущее, а также роль ИИ в научных конференциях и исследованиях в физике и химии. Традиционно выпуск ведут Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
📌This Is How We Are Going to Build AGI: CAIA Google рассказал о состоянии ИИ.
Логан Килпатрик из команды DeepMind беседует с Кораем Кавукчуоглу, CTO DeepMind и по совместительству новым главным архитектором Google по искусственному интеллекту.
Корай Кавукчуоглу рассказал о своих взглядах на текущее состояние ИИ, архитектуру Gemini и стратегию Google по достижению AGI. Он считает, что это «новая эра», где технологии стремительно меняются, и что ближайшие 6 месяцев обещают быть такими же захватывающими, как и предыдущие.
Основные темы интервью:
🟡Успех Gemini 3 и подход к AGI
Недавний запуск Gemini 3 получился суперпозитивным. Но прогресс не замедляется, и Gemini 3, подобно 2.5, снова «отодвинула рубеж по ряду измерений». Центральная философия Google в том, что AGI будет «совместно создаваться с нашими клиентами». Это не чисто исследовательская работа, проводимая в изоляции, а совместное усилие с миром, требующее инженерного мышления.
🟡Новый взгляд на прогресс и бенчмарки
Несмотря на то, что модели Google достигают лидирующих позиций на бенчмарках, истинное мерило прогресса в реальном применении. Старые бенчмарки перестают определять текущий рубеж, и новая мера успеха — это предоставление большей ценности в реальном мире, где модели используют ученые, студенты, юристы и инженеры.
🟡Планы на будущее
Приоритеты для улучшения в будущих версиях Gemini Pro:
🟢Следование инструкциям: Модель должна уметь понимать и выполнять запрос пользователя, а не просто отвечать так, как считает нужным.
🟢Интернационализация: Google сосредоточен на языках, где исторически производительность была невысокой.
🟢Функциональные и инструментальные вызовы: Это критически важные технические области, поскольку они позволяют моделям естественно использовать существующие инструменты.
🟢Код и агентские действия : Код - это база для создания чего угодно в цифровом мире. Корай считает, что агентские действия и код — это наиболее перспективные области роста, в которых еще есть много возможностей для совершенствования.
🟡Интеграция с продуктами и инновации
Интеграция- важная тема для сбора фидбэка от пользователей, который необходим для понимания того, как нужно улучшать модели. Риск для Gemini заключается не в отсутствии масштабирования, а в исчерпании инноваций. Поэтому Google DeepMind и Google Research должны постоянно заниматься исследованиями, чтобы находить новые идеи, которые будут питать «двигатель ИИ» Google.
🟡Единство моделей и генеративные медиа
Генеративные медиа-модели сходятся с текстовыми моделями. Яркий пример - Nano Banana Pro, которая показала, как слияние понимания мира из текста с пониманием из изображений позволяет модели создавать более детализированные и концептуально связные изображения, например, инфографику на основе сложных документов.
Фоном идет история о личном пути Корая Кавукчуоглу : от исследователя Deep Learning в DeepMind в 2012 году до текущей руководящей роли.
🔜 Смотреть полное интервью на Youtube
@ai_machinelearning_big_data
#news #ai #ml
🔥 Большой датасет коротких видео для рекомендаций VK-LSVD в открытом доступе
Мы открыли доступ к датасету VK-LSVD — это ~40 млрд взаимодействий между 10 млн пользователей и 20 млн видео, плюс контентные эмбеддинги и часть анонимизированных пользовательских фичей.
По меркам открытых рекомендательных датасетов — это очень большой и редкий набор данных. Но есть ещё один важный плюс: все взаимодействия сохранены в хронологическом порядке. Это сильно упрощает разбиение на train / val / test и улучшает воспроизводимость экспериментов — настоящий подарок для исследователей RecSys.
Кому полезно:
🔸исследователям рекомендательных систем;
🔸участникам соревнований;
🔸тем, кто просто хочет потренировать модельку на реалистичных данных и посмотреть, «как оно в проде».
На Хабре мы подробно рассказали:
🔸как устроен датасет;
🔸как загрузить и обработать данные;
🔸как готовить разбиения;
🔸как фильтровать пользователей/айтемы по популярности.
🔗 Приятного чтения и добро пожаловать в VK RecSys Challenge!
#RecSysChallenge #RecSys #LSVD
🌟 ZAYA1: первая MoE-модель, полностью обученная на стеке AMD.
Есть устойчивое мнение, что серьезное обучение нейросетей возможно только на чипах одной известной компании.
В Zyphra решили доказать обратное, и, в сотрудничестве с AMD и IBM провели эксперимент, который на практике доказал, что есть альтернатива.
Стартап опубликовал техотчет и результат - модель ZAYA1. Это первая модель архитектуры MoE, обученная полностью на платформе AMD.
Сеттинг проекта был действительно "красным": графические процессоры AMD Instinct, сетевые интерфейсы AMD Pensando и программный стек ROCm.
ZAYA1 получилась довольно интересной. У неё 8.3 млрд. общих параметров, из которых активных всего 800 миллионов.
Несмотря на компактность, в тестах она выглядит бодро. В ризонинге, математике и программирование ZAYA1 обошла Llama-3-8B и OLMoE. А по общим показателям встала в один ряд с Qwen3-4B и гугловской Gemma3-12B.
Обучение проходило на кластере IBM Cloud, где модель переварила 14 трлн. токенов. Но дело не только в железе, в папйплайне использовали архитектурные инновации:
🟢Новый механизм внимания - Compressed Convolutional Attention. Он использует свертки внутри блока внимания, это снизило нагрузку на вычисления и память.
🟢Переделали маршрутизатор MoE. Вместо стандартного линейного роутера, ZAYA1 использует сложную последовательность операций, что заставляет "экспертов" внутри нейросети специализироваться гораздо лучше.
🟢Residual Scaling. Добавили обучаемые скалярные гейты в остаточный стрим на выходы каждого блока, чтобы модель контролировала степень забывания.
⚠️ Для запуска инференса потребуется ветка zaya форка transformers из репозитория Zyphra.
📌Лицензирование: Apache 2.0 License.
🟡Статья
🟡Модель
🟡Arxiv
@ai_machinelearning_big_data
#AI #ML #LLM #MoE #Zyphra
🚀 We're excited to announce #SemEval2026 Task 3: DimABSA!
This year, we're introducing a new shared task on Dimensional Sentiment and Stance Analysis, designed to push sentiment analysis beyond simple polarity to richer, more expressive representations.
🔹 Track A — DimABSA
Focuses on Dimensional Aspect-Based Sentiment Analysis, where systems predict continuous valence–arousal (VA) values for specific aspects. This gives a more nuanced picture of emotion than just "positive" or "negative.".
- Languages: English, Japanese, Russian, Tatar, Ukrainian, Chinese
🔹 Track B — DimStance
Explores stance detection as a "stance-as-aspect" problem, modeling stance in the same continuous VA space — bridging sentiment and stance Analysis.
- Languages: English, German, Hausa, Kinyarwanda, Swahili, Twi, Chinese
💡 Why DimABSA & DimStance?
Traditional sentiment analysis captures only coarse, categorical judgments (e.g., positive/negative), missing the emotional richness found in human affect.
DimABSA adopts continuous valence–arousal representations inspired by psychological models of emotion, distinguishing not only how positive or negative a sentiment is, but also how intense or calm it feels.
This finer granularity opens new directions for research and applications:
- Detecting high-arousal misinformation or emotionally charged posts
- Differentiating mental health signals (e.g., anxiety vs. depression)
- Modeling emotion dynamics in dialogue and personalized, empathetic systems
- Bridging sentiment and stance analysis across domains like politics or environmental protection
🗓 Key Dates
Evaluation Start: January 10, 2026
Evaluation End: January 31, 2026
System Description Paper Due: February 2026
Camera Ready Due: April 2026
The SemEval Workshop 2026 will be co-located with #ACL2026 in San Diego.
📄 All details, datasets, and participation info:
👉 https://github.com/DimABSA/DimABSA2026
We're organizing this task together with:
Liang-Chih Yu • Shamsuddeen H. Muhammad, PhD • Idris Abdulmumin • Jonas Becker • Lung-Hao Lee • Jin Wang • Jan Philip Wahle • Terry Ruas • Alexander Panchenko • Kai-Wei Chang • Saif M Mohammad
A huge thanks to this incredible team for their collaboration and ideas — it's been amazing shaping this together.
If you're working on sentiment analysis, stance detection, affective computing, or emotion modeling, we'd love to have you join us.
See you at SemEval 2026! 🌍💬
OpenAI планирует потреблять больше энергии, чем Германия за пять лет и Индия за восемь лет
Telegram | Дзен | MAX
Мы опубликовали стабильный, быстрый, качественный и доступный синтез для 20 языков России и СНГ
0️⃣ Популярные языки из 🇷🇺🇺🇦🇺🇿🇰🇿🇦🇿🇹🇯🇧🇾🇬🇪🇰🇬🇦🇲;
1️⃣ Всего 20 языков России и стран СНГ, всего 95 голосов;
2️⃣ Модели компактные и быстрые, как наши прошлые релизы;
3️⃣ Поддержка SSML, генерация аудио с SR 8000, 24000, 48000;
4️⃣ Два типа моделей - base под лицензией MIT на наших данных и ext на данных сообщества;
5️⃣ Остались непокрытыми языки Дагестана и ЧР, если хотите помочь с добавлением этих языков пишите на @silero_job.
⭐️Репозиторий - github.com/snakers4/silero-models
⬆️Статья на Хабре - habr.com/ru/articles/968988/
🌟 RL-фреймворк для обучения MoE-моделей от создателей Chatbot Arena.
Miles - фреймворк для RL-обучения от команды LMSYS ORG, ориентированный на энтерпрайз-уровень.
Если вы следите за опенсорс разработками, вы наверняка слышали о предшественнике этой системы, проекте slime. Это легкий инструмент, который используют во многих современных пайплайнов пост-трейна. На нем, кстати, запускали GLM-4.6.
Slime доказал, что легковесный дизайн работает, и Miles делает следующий шаг - масштабное обучение архитектур MoE и поддержка тяжелых промышленных нагрузок.
🟡Технические детали.
Miles предлагает то, что называют "True On-Policy". Раньше между тренировкой и инференсом часто возникало расхождение. Теперь же, благодаря инфраструктурному подходу, LMSYS добилась нулевой дивергенции. Это стало возможным благодаря использованию Flash Attention 3, библиотеки DeepGEMM и ядер от Thinking Machines Lab, работающих в связке с torch.compile.
Вторая особенность - в использовании спекулятивного декодирования. Обычно в RL черновая модель замораживается, что мешает ей следовать политике целевой модели. LMSYS добавили онлайн-обучение черновой модели.
Результаты на тестах положительные: ускорение генерации более чем на 25%, особенно на поздних стадиях обучения.
🟡Стабильность.
Для энтерпрайза память - это деньги. В Miles включили механизмы, предотвращающие падение системы при некритичных ошибках OOM и исправили чрезмерное потребление памяти в FSDP.
В дорожной карте проекта обещают поддержку мультимодального обучения, совместимость со SGLang v2 и расширенное спекулятивное декодирование.
🟡Статья
🖥Github
@ai_machinelearning_big_data
#AI #ML #RL #Miles #LMSYS
🔭 Вышло огромное исследование на 303 страницы от ведущих китайских лабораторий — подробный разбор того, как создают и обучают модели, ориентированные на написание кода, и как на их основе строят полноценные софт-агенты.
Вот что в нём разбирается:
1. Как формируют модель
- Сбор и очистка гигантских датасетов кода.
- Предобучение: модель впитывает реальные паттерны программирования в промышленных масштабах.
- SFT и RL: дополнительные этапы, где модель учат лучше следовать инструкциям, проходить тесты и избегать очевидных ошибок.
2. Как модели превращают в инженерных агентов
- Агент читает баг-репорт или фичу.
- Планирует шаги.
- Меняет файлы.
- Запускает тесты.
- Повторяет цикл, пока не добьётся результата.
3. Какие проблемы всё ещё остаются
- Работа с огромными репозиториями.
- Безопасность и надёжность генерируемого кода.
- Корректная оценка качества работы агентов.
- Реальные приёмы и лайфхаки, которые используют текущие команды.
Исследование - мощный срез состояния индустрии: от датасетов и архитектур до практических инженерных пайплайнов. Это именно то, как современные LLM превращаются в «второго разработчика» в команде.
https://arxiv.org/abs/2511.18538
@data_analysis_ml
коллеги, хочу поделиться радостной новостью, нашу статью приняли на NeurIPS; точнее приняли ее уже с месяц назад, а сейчас мы решили про это рассказать - написали статью на Хабр
я в этой статье мало что делал, в основном вкладывались коллеги в первой половине списка авторов; суть статьи довольно простая - мы можем заменить некоторые трансформерные слои в LLM на линейные преобразования (первая картинка); это экономит память и время, а качество страдает несильно (вторая картинка)
подробности по ссылкам выше; кстати, выложили код
@valuableai
Вместе с ростом цен на память грядёт и подорожание SSD. Операторы ИИ-инфраструктуры своими заказами создали дефицит флеш-памяти: за ноябрь контрактные цены чипов TLC NAND подскочили на 20-60%, а спотовые цены — на 50-80%
Мой Компьютер
На ридинг-группе 4 декабря обсудим очередную попытку разрушить классическую парадигму рекомендательных систем – фреймворк RecGPT от компании Taobao.
Китайский комбайн умеет предсказывать интент и интересы пользователя, генерировать и ранжировать айтемы-кандидаты и даже объяснять рекомендации.
Ведущим будет Александр Подвойский, ML-инженер AI VK.
🔹 4 декабря в 18:00
Zoom: ссылка
ID: 707 776 9330
Код: 464167
Параллельно запустим стрим прямо в канале AI VK Hub.
#ридинггруппа #aivk
📏Mera MULTI📏
Большой день для большого релиза!
Встречаем новую мультимодальную версию бенчмарка - MERA Multi.
В мультимодальной версии бенчмарка представлено 18 новых задач, разработанных по методологии основного бенчмарка, которые охватывают визуальное восприятие, аудиопонимание и анализ видео.
📏 MERA Multi это:
✔️Таксономия мультимодальных навыков.
✔️Обновленная универсальная система промптов.
✔️18 новых мультимодальных задач в инструктивном формате для видео, картинок и аудио.
✔️Публичные и приватные датасеты, созданные с нуля для русского языка.
✔️Открытая платформа со сквозной системой подсчёта баллов.
✔️Открытая кодовая база для оценки и тестирования.
✔️Лидерборд, охватывающий как открытые открытые модели, так и проприетарные.
📏Mera Multi
👀Habr
💻GitHub
📚Статья
@mashkka_ds
#llm #mera #ai #genai
🚀 Turkic languages translation challenge at LoResMT'2026
We invite MT & low-resource NLP teams to a new shared task on translating Turkic languages under realistic low-data conditions.
🔹 Language Pairs:
Russian-Bashkir (available now!)
English-Chuvash (available now!)
Russian-Kazakh
English-Tatar (available now!)
Russian-Kyrgyz
Other language pairs will be available shortly.
🎯 Why join?
Turkic languages are morphology-rich, dialectally diverse, under-served in MT. This task targets real impact: cultural representation while advancing transfer learning and morphology-aware models.
📦 Data
We provide test data only, while you can use any publicly available data for training.
📏 Evaluation: chrF++
🗓 Key dates
Evaluation: Dec 1, 2025 - Jan 11, 2026
System description due: Jan 27, 2026
Workshop: LoResMT (co-located with EACL 2026, Maroc)
🔗 Ready to join?
https://ods.ai/tracks/turkic-lores-mt
Join us — let’s make Turkic languages more connected! 🌍🗣️
😈 Как ИИ впервые сам сходил “на дело”
🇨🇳 В сентябре госгруппа, связанная с Китаем, провернула одну из первых документированных кибершпионских операций, где львиная доля рутины была выполнена ИИ, а не людьми.
☑️ Для атаки злоумышленники использовали кодового ассистента Claude Code, превратив его в агентную систему, которая сама делала разведку, писала скрипты, сканировала уязвимости и помогала с эксфильтрацией данных примерно по 30 целям по всему миру.
🤖 Что именно сделал ИИ (и почему это страшно круто и страшно опасно)
🧐По оценкам исследователей, люди были нужны всего на 10–20%: они задавали общую тактику, а ИИ закрывал до 80–90% операционки — от разведки и подбора эксплойтов до автоматизации шагов проникновения.
😵 В перечне целей фигурируют крупные техкомпании, финсектор, химпром и госагентства, то есть классический “золотой набор” для шпионажа, а не мелкий криминал ради выкупа.
😱 Как им удалось обойти “защитные бортики” ИИ
🥷 Хакеры фактически “взломали” guardrails, добившись от модели выполнения действий, которые по идее должны были блокироваться политиками безопасности.
😏Через цепочку промптов и разбиение задачи на мелкие шаги они добились того, что ИИ последовательно генерировал и оптимизировал скрипты атаки, не воспринимая весь контекст как запрещённый.
🌍 Почему эта история — прям новый рубеж для кибербеза
1️⃣Во‑первых, это один из первых публично задокументированных кейсов, когда ИИ не просто “подсказывает”, а реально оркестрирует большую часть кибероперации.
2️⃣ Во‑вторых, это демонстрация того, что масштабирование атак теперь упирается не в количество живых операторов, а в мощность и архитектуру агентных систем, что радикально меняет экономику угроз.
🛡 Атака на AI = атака на цепочку поставки безопасности
👹 Фактически злоумышленники использовали коммерческий ИИ‑сервис как часть своей kill chain, то есть вектором становится сам поставщик ИИ‑инструментов.
✋ Это поднимает вопросы не только про безопасность инфраструктуры вендора, но и про модели злоупотребления API, мониторинг аномальных паттернов запросов и ответственность провайдеров за “военные применения” их моделей.
🧱 Что сделали защитники и как это выглядело
😅 Компания‑разработчик обнаружила подозрительную активность в середине сентября, сопоставила аномальные паттерны использования и атрибуцию к госгруппе, после чего заблокировала злоумышленникам доступ, уведомила потенциально затронутые организации и усилила детектирование подобных сценариев.
🤖На уровне отрасли инцидент уже рассматривается как поворотный момент и аргумент в пользу жёстких режимов мониторинга и ограничений для высокоавтономных агентных систем.
😎 Чему эта история учит CISO и безопасников
1️⃣Во‑первых, ИИ‑агенты нужно официально считать отдельным классом участников инфраструктуры с собственными ролями, доступами и контролями, а не “умной IDE”.
2️⃣Во‑вторых, придётся перестроить модели угроз: теперь в них отдельно прописывается злоумышленник, который не пишет код руками, а массово генерирует и тестирует сценарии атаки через легальный AI‑сервис.
🛡 Противодействие и защита от AI‑оркестрированных атак
На стороне компаний‑жертв:
- Пересмотр моделей угроз с явным учётом AI‑ассистированных APT‑операций и сценариев быстрого масштабирования атак.
- Укрепление базового периметра: своевременное закрытие уязвимостей, сегментация сетей, жёсткая валидация аномальной активности в учётках и сервисах даже при “правильных” логинах и токенах.
- Внедрение детектов для необычной автоматизированной активности (массовые сканы, серийные попытки эксплуатации, однообразные, но быстрые последовательности действий) независимо от того, кто за ними стоит — человек или агент.
➡️[ПОДДЕРЖАТЬ ПОДПИСКОЙ]⬅️🔚
📝Автор: Беляев Дмитрий
#кибербезопасность #кибератаки #искусственныйинтеллект #APT #CISO
🎙 [Проект BST] | | 📺 [Rutube] | 📺 [VK] | 🎵 [Мои подкасты] | 💰 [Буст Канала] | 💬 [Откомментировать] | 🎙[Участие в подкасте]
🌟 ToolOrchestra: буст ИИ-потенциала за счет координации моделей и инструментов.
NVIDIA совместно с Университетом Гонконга разработала ToolOrchestra - методику обучения дирижеров для ИИ-агентов, и выпустила на ее основе модель Orchestrator-8B.
Это модель, базирующаяся на архитектуре Qwen3 предназначена для оркестрации других моделей и инструментов. Вместо того чтобы решать задачу в одиночку, модель чередует этапы рассуждения с вызовом внешних инструментов.
В ее арсенале поисковые движки, интерпретаторы кода и другие LLM, от узкоспециализированных математических до универсальных гигантов Claude и Llama-Nemotron.
Обучение проводилось с помощью GRPO, который поощрял модель не только за точность, но и за экономическую эффективность.
В результате решение получилось в 2,5 раза быстрее и на 70% дешевле в эксплуатации, чем использование одной лишь флагманской модели для всех этапов задачи, а сама Orchestrator-8B набрала 37,1% в сложнейшем бенчмарке Humanity's Last Exam , обойдя GPT-5 (35,1%).
📌Лицензирование кода : Apache 2.0 License.
📌Лицензирование модели: NVIDIA License.
🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Датасет
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #LLM #Orchestrator #NVIDIA
Запись семинара
Виталий Черненко (Амальгама), Практическое применение комбинаторной оптимизации на примере задачи планирования молочного завода. YouTube | Дзен | RuTube (~1 час 25 минут).
Follow-up статья: что придумали помимо базовых декодерных авторегрессионных моделей в современных LLM. Спойлер: не особо много чего.
Linear Attention Hybrids – замена базового квадратичного аттеншена на линейный. KV-кэш оптимизирован лучше, но метрики немного просели. Первые вариации придумали еще в 2020, хех (см. Qwen3-Next, DeepSeek V3.2 и т.д.).
Text Diffusion Models – теоретически дают выигрыш за счёт параллельной генерации, но на практике результаты хуже из-за проблем с моделированием сложных условных вероятностей. К тому же не работает Chain of Thought, про который рассказывают уже даже на бизнесовых докладах.
Small Recursive Transformers – красиво решают головоломки. Возможно, будут использоваться как тулзы для больших моделей, но пока это больше красивая история – хотя модели сильно меньше 100млн
Code World Models – LLM для кодинга, которые внутри себя моделируют то, как будет работать код. На деле – увеличение compute, и результат выходит то на то по сравнению с классическими подходами, но звучит красиво
Это настоящее откровение. 😆
Авторы статьи показывают, что превращение вредоносных запросов в поэзию заставляет многие чат-боты сбрасывать свои правила безопасности.
В эксперименте тестируют 25 моделей - и получают небезопасные ответы примерно в 60% случаев, а у некоторых моделей показатель превышает 90%.
Джейлбрейком считается ситуация, когда модель, которая должна отказать, вместо этого выдаёт чёткие шаги или советы для вредоносных действий.
Методика предельно простая: берут один пользовательский запрос, переписывают 20 опасных инструкций в виде стихов, затем превращают 1200 вредных запросов из стандартного набора для тестирования безопасности в поэзию с помощью фиксированной инструкции.
Каждый ответ проверяют три модель-судьи и люди-оценщики, помечая, помогает ли реплика выполнить опасный запрос.
Темы охватывают хакерство, опасные химические вещества и биологию, манипуляции, утечки приватных данных и сценарии потери контроля — и почти везде поэтическая форма вызывает резкий рост небезопасных ответов.
Это показывает, что обучение безопасности на обычном тексте плохо справляется с изменением стиля.
Источник: arxiv.org/abs/2511.15304
⚡️ Claude Opus 4.5.
Anthropic выпустила Claude Opus 4.5, которую назвала «лучшей в мире».
Модель по тестам выбивает топовые результаты в программировании и работе с агентами. Говорят, что она даже превзошла всех кандидатов-людей на внутреннем тесте.
Модель подешевела. Цена за 1 млн. токенов теперь составляет $5 на вход и $25 на выход.
Для разработчиков добавили новый параметр (low, high и medium), позволяющий балансировать между скоростью ответа и качеством генерации.
@ai_machinelearning_big_data
#news #ai #ml
🔺 Коллеги написали несколько обзорных статей по свежим релизам с AIJ с деталями разработки, читаем:
MERA Multi. Новый мультимодальный бенч для русскоязычных моделей. В топе там пока что мы, humans.
GigaTTS. Новый синтез речи. По естественности голоса стал в несколько раз лучше. Научили смеяться.
Linear Attention. Берем свой предобученный трансформер, стучим по нему молотком (оптимизируем), получаем те же метрики, но константу по памяти. Есть код.
GigaChat Ultra. Как с нуля обучается самая большая 702B (!) русскоязычная модель (прямо сейчас).
Всем привет!
Смотрите двадцать первый выпуск подкаста "Капитанский мостик". В этом выпуске обсуждаются последние новости в области искусственного интеллекта, включая децентрализованные вычисления и аренду вычислительных мощностей. Ведущие подкаста - Валентин Малых и Дмитрий Колодезев. Приглашенный участник выпуска -Даниель Щебентовский.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
🌐 Google получит доступ ко всем личным сообщениям и вложениям в Gmail для обучения своих ИИ-моделей
Как сообщает Malwarebytes, Google включает для пользователей настройку, которая дает доступ ко всем личным перепискам и вложениям Gmail в целях обучения своих ИИ-моделей. Это означает, что ваши электронные письма и файлы могут быть проанализированы для "улучшения ИИ-ассистентов" Google.
Некоторые пользователи уже сообщают, что эти настройки включены «по умолчанию» без явного на это согласия.
Если не отключить эти настройки вручную, то ваши личные сообщения будут использоваться для обучения ИИ в фоновом режиме.
Процедура отказа от ИИ-обучения на ваших данных требует изменения настроек в двух разных местах:
🔐 Отключите «Умные функции» в настройках Gmail, Chat и Meet:
🔻 Откройте Gmail в браузере на компьютере или в мобильном приложении
🔻 Нажмите на значок шестеренки → Все настройки (на компьютере) или Меню → Настройки (на мобильном устройстве)
🔻 Нужно отключить "Умные функции" и "Умные функции Google Workspace"
Google разделяет «умные» функции Workspace (почта, чат, видеовстречи) и умные функции, используемые в других приложениях Google. Чтобы полностью отказаться от передачи ваших данных для обучения ИИ, необходимо отключить обе категории.
Возможно, в вашем аккаунте эти настройки еще не включены по умолчанию, так как, судя по всему, Google внедряет эти изменения постепенно.
✋ @Russian_OSINT