Канал Виктора Кантора про Data Science, образование и карьеру в сфере анализа данных. По вопросам сотрудничества: @mariekap РКН: 5140322136
Мы так однажды с Никитой (автором поста ниже) поспорили, как считать в рекомендациях precision@k, когда кандидатов меньше k. Никита топил за реализацию в катбусте, потому что читал исходники, а я топил за деление на k, потому что привык, что по графикам precision@k и recall@k можно базово прикинуть адекватное вашему случаю количество рекомендаций в блоке или найти проблему типа нехватки кандидатов: если в какой-то момент precision@k начинает сильно падать просто потому что вместо 5 рекомендаций у вас повально 2, это проще заметить.
В итоге, изучив другие источники, Никита, с нотками досады признал правильным мой вариант, хотя логика в катбустовой реализации конечно тоже понятна - не штрафовать, если лучше уже нельзя было отранжировать. И если честно, я бы не был здесь так категоричен в вопросе «как правильно». Смотря чего вы хотите: включать измерение качества кандидатов в метрику или нет. Но главное, что так мы с Никитой узнали, что нам есть о чем поговорить, кроме слайдов в Power Point, и это было прекрасно :)))
/channel/datarascals/11
Предпраздничное настроение само собой подводит к загадыванию желаний. Например, после чтения поста по ссылке, у меня возникло такое:
🎄🥂Пусть в новом году будет больше руководителей, которым можно прислать подобный скрипт, вместо долгого нудного объяснения, почему сравнивать распределения только по среднему и «на глазок» это дичь :)
Хотя, конечно, я верю в светлое будущее, когда представители всех ролей в индустрии будут просто это знать и понимать
Матричное дифференцирование
😱 В ML периодически возникает потребность взять производную от матричного выражения, как правило имеющую вид «производная вектора по вектору». Если вас всегда ломало разобраться с матричным дифференцированием, а строгое формальное изложение матричных производных через дифференциалы вводило в уныние, я недавно записал видео с простым объяснением, как это работает.
🎭 В ролике есть определенная драматургия: будет момент, где мы с вами сами начнем придумывать матричную производную так, чтобы она в частном случае превращалась в уже привычный нам градиент. И оттуда станет ясно, почему матричная производная именно такая, а не, например, транспонированная.
🤓 Всем, кто хочет шарить за ML чуть глубже, чем «ну я тут что-то обучил и в докер завернул, а как работает не мое дело» - рекомендую к просмотру. Жить без матричных производных можно, но компактно оперировать формулами очень удобно.
В четверг проводим вебинар перед запуском курса ML в бизнесе. В курсе разбираем с Никитой топ 7 задач по экономическому эффекту от ML для бизнеса
Читать полностью…Недавно вышел эпизод YaC 2024 про технологии Яндекса, где рассказали о нейросетях и их внедрении в сервисы компании.
И, в частности, про то, как интегрировали мультимодальные VLM (Vision-Language Models) в «Поиск с Нейро», которые помогают сервису анализировать текстовую и визуальную информацию — и отвечать на вопросы, связанные с изображениями.
Там же можно узнать про то, как Яндекс применил трансформеры для обучения своего автономного транспорта, как запускали новое поколение Алисы на базе YandexGPT и многое другое. Посмотреть все эпизоды можно здесь.
Ну что же, в последнем квизе, конечно, правильный ответ был [3], но раз он не зашел аудитории, вот вам вопрос поинтереснее.
Предыстория: студент анализировал тексты классическими методами. В частности, строил признаковые описания на основе частот слов. После отображения выборки в пространство двух главных компонент студент получил такую замысловатую картинку. Глядя на нее, научрук сразу посоветовал не писать свои костыли, а пользоваться готовыми реализациями из библиотек, а также сразу сказал, где у студента ошибка.
Вопрос: где у студента была ошибка?
Вопрос "со звездочкой": как может объясняться резкий перепад в графике рядом с 1200 по горизонтальной оси?
Пишите ваши версии в комментариях :)
‼️Интервью с руководителем Школы Анализа Данных Яндекса
🎤Опубликовали в YouTube канале интервью с Лешей Толстиковым. Много говорим об образовании, ШАДе и алгоритмах (нужны или не нужны, почему), ну и конечно же обсудили, как складывался карьерный трек самого Леши :)
Если вы хотите узнать о том, что происходит в сфере IT-менеджмента, как на самом деле создают продукты и прокачивают команды, то загляните на канал «Кем я хочу стать, когда вырасту».
Автор канал с 10+ опытом тимлидства в IT в формате заметок честно делится наблюдениями, успехами и провалами:
- о работающих методах мотивации команд
- стоит ли стремиться в руководители на самом деле
- почему на рынок выходит так много слабых продуктов
Реклама. ИП Миронова Надежда Олеговна, ИНН: 772985604739 erid:2VtzqvK2rLg
На поиск нужных каналов в Telegram может уйти очень много времени, поэтому ловите очередную папку каналов, на этот раз про ИИ:
/channel/addlist/pqfkNeFjRnU5NDFi
Особенно мне нравятся ребята Tips AI - там не про внутрянку ИИ (этого мне итак в жизни хватает), а посты про очередные нейросетевые сервисы, которые могут ускорить выполнение ваших задач
Ну и, конечно, куда без Саши Dealer.AI :)
Вот пример специфичного примера от подписчиков.
Для русского языка слово "отечество" специфично и поэтому генерация релевантна.
Но родное подвело... Да...
Запросы: История отечества и родная история.
Есть ли отечественные генеративные нейросети на самом деле?
В соцсетях сейчас вирусится видео, прикрепленное к посту: молодой человек рассказывает о том, как отечественные нейросети выдают крайне подозрительный результат по запросу нарисовать «родное».
Первое, что думают люди, видя такое, это что отечественных нейросетей на самом деле нет и они просто перенаправляют запросы в апишку Midjourney и им подобных зарубежных оригиналов.
Те, кто более прошарен, думают, что наши компании просто берут зарубежный опенсорс, разворачивают у себя, а русские запросы обрабатывают после перевода на английский.
А кто еще более прошарен, знает, что опенсорс в целом поддерживает и русский язык. Остается вопрос: так как же все-таки работают отечественные нейросети?
Зачем гадать, если можно спросить эксперта в области технологий AI, который сам имеет отношение к теме генеративного ИИ — Александра Абрамова. См. ответ у него в канале или репост ниже 👇
Что учить в университете
Вчера записывал интервью с очень крутым разрабом из Яндекса. Обсуждали (уже ближе к концу записи), что нужно учить в университете, а что можно и потом. Прозвучала гениальная по своей простоте и железобетонной логике аксиома: в универе надо учить то, что потом уже не выучишь, например математику и прочую фундаментальщину. Нефундаментальщина через 5-10 лет изменится
Как бизнесу использовать LLM в 2025 году?
Об этом расскажут эксперты в области искусственного интеллекта MTS AI и «Вижнсервис» на вебинаре 4 декабря в 12:00 по МСК.
➡️ РЕГИСТРАЦИЯ ⬅️
Вы узнаете:
🔴 Что такое RAG и как он помогает экономить до 4 часов в поиске информации;
🔴 Как автоматизировать рутинные задачи с помощью Cotype и трансформировать работу с документами и корпоративной информацией;
🔴 Как ускорить разработку ПО с помощью Kodify;
🔴 Как упростить управление корпоративными коммуникациями и повысить эффективность работы с помощью платформы MAX.
💌 P.S. Для всех зрителей мы подготовили бонус — доступ к обновленной опенсорс-модели Cotype.
➡️ Занять место и узнать подробности можно по ссылке.
До встречи!
Реклама. ООО «МТС ИИ»
Больше vs лучше
Когда я начинаю уделять больше времени преподаванию, с завидной регулярностью возвращаюсь к выбору «напихать в программу больше интересных вещей» или «лучше рассказать то, что действительно важно». То, что сейчас машинное обучение абсолютно безразмерная область, в которой можно расширять программу курса просто до бесконечности, только провоцирует на первый подход. Кроме того, насыщенная программа легче выдается людям за более полезную. Полистал свои же посты, и пять лет назад тоже во время пика преподавательской активности думал о том же самом, даже рассказал тут про свой любимый курс на Физтехе :)
А что вы думаете? Лучше более интенсивная программа или фокус на понимание самого важного?
🥚 Первый день МТС в ВШЭ
Приглашаем на день МТС в Вышку, где на Q&A-сессии топ-менеджеры компании ответят на ваши вопросы, а эксперты МТС поделятся своим опытом и расскажут о реальных прикладных задачах.
Вы сможете:
➡️погрузиться в виртуальную реальность с помощью VR-очков
➡️испытать свою ловкость в гигантской дженге
➡️сделать самое динамичное фото с помощью Bullet time
➡️оценить необычные угощения и напитки
➡️выиграть крутые призы и мерч от МТС
📆 Когда: 2 декабря в 18:00
🗺️ Где: Культурный центр ВШЭ, Покровский бульвар, 11
Зарегистрироваться🐭
#анонсы #МТС
#с_level
PowerPoint-зазеркалье
Если меня спросят, от чего у меня больше всего горело на C-level, так это от двух вещей: комитетов и презенташек. Про комитеты я напишу отдельный пост, а вот по презенташкам слегка пройдусь сейчас.
Не подумайте, я не считаю Power Point злом во плоти. На мой взгляд, несмотря на громкие амазонские эксперименты, слайды могут неплохо помогать людям донести свои мысли быстро и четко, если у человека правда есть какая-то внятно сформулированная цель коммуникации, а слайды подготовлены тоже качественно. И горит у меня не от того, что люди часто рисуют слайды неинформативными или наоборот перегруженными, с этим тоже можно жить. И исправлять эту ситуацию несложно.
Горит у меня вот от чего: в куче компаний топ-менеджмент периодически собирается на всякие совещания и стратсессии, на которых показывает друг-другу домашние заготовки (в виде нарисованных их сотрудниками слайдов) под видом того, что нарисованное на этих слайдах и есть то, что реально происходит и будет происходить в бизнесе. На этих слайдах обязательно рисуются какие-то амбиции, планы, грандиозные замыслы, золотые горы, к которым только руку протяни и вот до конца контракта докладчика будет все подготовлено и прямо на следующий год как долбанет вверх выручка, ух как заживем! А рядом с моим домом тем временем ездят роботы-курьеры, которые на улицах Москвы еще пять лет назад показались бы фантастикой. И я точно знаю, что эти роботы ездят не потому, что кто-то нарисовал слайды в Power Point.
Ощущение, что все эти наши шабаши со слайдами - это путь куда-то не туда, грызло меня с самого начала. С другой стороны, числа с результатами и планами показать друг-другу надо, и идею/мечту (у кого что) донести надо, и обсудить тоже надо. Так что выглядит как необходимое зло. Но есть два логичных способа попытаться это зло чуточку уменьшить:
1) Числа по текущей ситуации в бизнесе надо показывать не посредством написания руками чисел на слайде, а в дашбордах на основе регулярно валидируемых данных
2) Если можно про что-то не рассказать, а показать - показывать. Лучше одно демо, чем 10 срежессированных видосов или 100 объяснений, как классно оно работает.
Отдельная проблема с последним это как сделать демо, если ваш результат это например улучшение эффекта от рекомендаций на 10%. Вообще рассказывать про инкрементальные улучшения в существующих ML штуках очень больно: все эти проценты ничего не значат для тех, кто не разбирается, а тем, кто разбирается, достаточно таблички с результатами и ответов на несколько вопросов. Но никакими эффектными демо тут и не пахнет. Даже наоборот - эффектные демо дадут те вещи, которые вряд ли сильно повлияют на метрики. Вот и получается, что вроде боролись со злом в лице слайдов, а создали новое зло - мотивацию делать штуки для красивого демо, а не для большего эффекта.
В итоге я пришел к принятию, что вся эта история про зазеркалье презентаций и мир, существующий на слайдах - не про слайды и Power Point. Она про культуру нашего общения, взаимодействия и оценки результатов. Если у нас в крови мерять все, что меряется, это одна история. Если мы с детства любим красивые сказки и эмоциональные рассказы - это другая. Первое нужно, чтобы не улететь совсем в облака, а второе на самом деле тоже нужно - чтобы продолжать мечтать и сохранять мотивацию идти дальше. Плохо, когда остается только что-то одно.
Ну а Power Point это просто инструмент: что запрещай его, что не запрещай - сказочники останутся сказочниками, а любители все измерить продолжат смотреть на числа.
А как вы думаете, что нужно делать, чтобы планы и стратегии, нарисованные в слайдах, имели какую-то связь с реальным миром? И нужно ли вообще, или наоборот пусть лучше нормальные люди работают, а фантазеры фантазируют визионеры визионируют?
ML в бизнесе
Машинное обучение - это моя жизнь. Буквально полжизни я занимаюсь ML. И мои отношения с ним менялись и развивались со временем:
👨🎓15 лет назад я разбирался как работают алгоритмы и как из них собирать что-то реально работающее.
👨🔬10 назад я вникал в то, как постановка задачи влияет на полезность решения, ведь то, как вы выбираете таргет и измеряете качество, намного важнее, чем бустинг вы используете для модели или бустинг :)
👨🏫Тогда же я уже понял, что один в поле не воин и собирать эффективные команды, развивать их и управлять ими дает сильно больший импакт чем все задачи решать самому.
👨💼Лет пять назад на этом пути я дошел до управления Data Science, а затем и всей data функцией в качестве топ-менеджера в большой группе компаний, и получил самый мощный буст к кругозору в бизнесовом ML, какой только бывает
И после нескольких очень меня прокачавших лет работы топом случился кризис смыслов: работать я могу в любой компании, но влиять только на нее мне стало недостаточно. Решение не заставило себя долго ждать, потому что зрело уже много лет. Я собрал топ задач, решаемых в бизнесе с помощью ML, покрасил их грубо в черное и белое - где экономика расходится, где сходится, а где эффект не стоит того, чтобы пытаться. И прямо по этому списку составил вместе с Никитой Зелинским курс из прикладных задач, которые регулярно возникают везде: в телекоме, финтехе, ритейле, e-commerce, райдтехе, классическом айти с многопользовательскими приложениями и много где еще. Зачем? Чтобы теперь замашинлернить не одну компанию, не один холдинг, а все, до чего дотягивается солнце на рассвете - ну помните, как в "Короле льве" :))
ЧТО БЫЛО ДАЛЬШЕ:
🧠Мы обкатали этот курс на студентах двух топовых вузов России - МФТИ и НИУ ВШЭ
🏟Мы взяли полгода на его доработку и адаптацию к более широкому кругу слушателей
🎉Мы подготовили курс к запуску в моей онлайн-школе MLinside
Завтра мы с Никитой ведем вебинар перед стартом курса. Еще не поздно зарегистрироваться и попасть на первый поток. В этом случае вы первым:
1️⃣Научитесь решать не только свою задачу, с которой сидите последний год/два/три на работе
2️⃣Станете востребованным ML специалистом в любой компании: если не все, то больше половины изученных на курсе задач будет в ней применимо
3️⃣Получите буквально за несколько месяцев выжимку того опыта, который мы с Никитой собирали по крупицам в больших экосистемах больше десяти лет
‼️Присоединяйтесь к нам, будет круто :)
🚀 Вебинар с Никитой Зелинским: Подходы к валидации моделей
🗓 Дата: 19 декабря (четверг)
⏰ Время: 20:00 по МСК
🎤 Спикер: Никита Зелинский — Chief Data Scientist компании МТС, кандидат физико-математических наук с 14-летним коммерческим опытом в DS и ML.
Что будет на вебинаре?
🔹Презентация нашего курса «ML в бизнесе». Этот вебинар — вводная часть курса, в котором мы глубже и детальнее разберем ключевые темы и научим внедрять ML в реальные задачи бизнеса;
🔹Рассмотрим схемы валидации;
🔹Разберем практические кейсы.
👉 Регистрируйтесь здесь
🌟 Будем рады видеть вас на вебинаре!
Крик души про оценку качества рекламы по попаданию в пол-возраст
Иногда Data Scientist’ы в тг не боятся писать лютую базу. А тут даже не база, а целый генштаб.
Тоже горит с этого наяривания на пол-возраст вместо прямого прогнозирования отклика и замера его качества. А уж оценка попадания по панелистам или по Яндекс.Метрике по принципу «если даже такую простую задачу плохо решите, то куда вам до response моделей» - просто полыхание всего, что плохо сидит))
Итак, ответ на вопросы успешно найден в комментариях. Т.к. на картинке датасет выстроился почти в непрерывную кривую, разность между координатами соседних текстов оказалась всегда маленькой. Это значит, что и в исходных признаках при переходе от текста к тексту признаки изменялись лишь чуть-чуть.
Очевидный способ достижения этого результата - забыть обнулять счетчики частот слов, что и сделал студент, о чем и догадался научрук. Пассаж про изучение библиотек был, конечно же, о том, что в sklearn есть готовые текстовые векторизации, которые можно взять из коробки и не накосячить таким образом. Тот факт, что студент забыл обнулять счетчики, проверяется легко: достаточно посмотреть на матрицу признаков, ведь к последнему тексту нулей уже, конечно же, не осталось.
Почему же возникали разрывы? Из-за плохой предобработки текстов были тексты с большим количеством всяких спецсимволов и слов, которые давали очень большой прирост к криво выделенным токенам. В частности, картина из предыдущего поста - это еще после фильтрации части таких спецтекстов. Без фильтрации получалась та, которую вы видите в прикрепленных к посту
#квиз
Что-то давно у нас не было квизов :) Задавайте свои ответы!
🔥Подкаст про большие языковые модели с Сашей Абрамовым
Опубликовал полную версию подкаста с Dealer.AI
YouTube: https://youtu.be/3ra-zgi-dIM
VKвидео: https://vkvideo.ru/video-228552366_456239026?list=ln-1rG35Aicro6zMIMOIK
Саша не только в значительной степени приложил руку к Сберовским LLM и GenAI, но и очень хорошо рассказывает. К просмотру строго обязательно :)
Подкаст про технологии ИИ
Многие из вас в курсе, что я в этом году публикую второй сезон подкаста ТехТок, и этот сезон посвящен технологиям искусственного интеллекта. Цель - рассказать про важные для современного мира технологии на более широкую аудиторию, чем те, кто уже работает в AI. До сих пор подкаст был доступен только на YouTube, а теперь появился канал и на VK Видео, чтобы вы могли скинуть подкаст вашим родственникам и друзьям не из IT :)
VKвидео: kantortechtalk" rel="nofollow">https://vkvideo.ru/@kantortechtalk
YouTube: www.youtube.com/@KantorTechTalk
‼️Обязательно подписывайтесь и следите за новыми выпусками! В этом сезоне их будет еще шесть.
🎬Также вышел тизер подкаста с нашим следующим гостем, которого я уже несколько раз упоминал в канале за последнее время - с Александром Абрамовым :) Тема выпуска: большие языковые модели
Выступал на прошлой неделе в Вышке, а точнее поотвечал на сцене на вопросы Жене Соколову и студентам ВШЭ.
На фото мы с Женей Соколовым даем студентам автографы на видеокарте «чтобы лучше обучала» 😂 Никогда бы не подумал, что доживу до этого
Кстати некоторые вопросы из зала были довольно каверзные, так что я получил огромное удовольствие, пока давал ответ :)
Например, мой любимый вопрос: надо ли идти в компании, запускающие много новых направлений, ведь не все они взлетят, деньги будут потрачены, и потом придется резать косты (вместе с вашей вакансией). На сцене я дал один очевидный ответ, что ваша карьера зависит от ваших усилий, талантов и находчивости больше, чем от планов компании, потому что даже в период кризисов все равно есть люди, которые добиваются роста области ответственности и доходов. Кроме того, рассуждение «ой я такой хороший работал в компании, но продукт не взлетел» содержит очевидный пробел в логике. Ну работайте так, чтобы у продукта было больше шансов взлететь. Не все зависит от вас, но и самоустраняться так, что вы хорошо все делаете сами по себе, а продукт не летит сам по себе, не надо. Кроме того, менеджмент все же разделяет работу технических специалистов и руководителей, и если есть вера в то, что вы как раз были молодец и все делали классно, вас просто с руками оторвут в другой продукт компании.
Уже после мероприятия я понял, что у меня был пример на эту тему прямо на сцене, который я не догадался привести. Мы с Женей Соколовым были в Яндексе коллегами и работали в Yandex Data Factory, но когда YDF был близок к закрытию, прекрасно возглавили Data Science в Яндекс.Такси (я) и в тогда еще Яндекс.Дзене (Женя). Понадобилось ли нам самим найти себе применение в компании? Конечно да, нужно было пообщаться, узнать где что есть, договориться о переходе. Но никто нас никуда не уволил, всем было чем заняться, работы было вагон.
Вы спросили —Дядя отвечает. Истина находится где-то по середине. Действительно на нашем рынке можно встретить множество решений вокруг открытых моделей с huggingface или же апи модных нынче Midjourney. Это может работать по принципу перевел с ру на ен и вкинул в апиху, далее выдал результат. Обычно, на старте, это было уделом малых команд, стартапов и пр.
На самом деле, ничего в этом зазорного нет, те же ребята с Perplexity строить свое решение начали именно вокруг топовых апи LLM (OpenAI, Google, Anthropic и т.п.). Но при этом perplexity имеют свою доп. логику с поиском, линковкой фактов и пр. Что делает ее решение аналогом поисковика "в кармане". После, они еще и собственные тюны моделей Llama like завезли, благо лицензия открытая позволяет. И это имеет спрос.
Т.е. более крупные игроки, стараются использовать такие решения для холодного старта или во все опираясь на открытые сеты , модели или архитектуры делать собственные решения/тюны/модели. И я думаю, что крупные игроки нашего рынка достигли уже того уровня зрелости, когда могут позволить себе свои исследования, и как следствие, свои решения в виде моделей и сервисов.
Вопрос остается только в источниках данных. Такое поведение, как мы видим на видео, может быть обусловлено, влиянием сетов обучения. Т.к. на рынке множество открытых сетов на английском языке для задач text2image, а для русского языка примеров много меньше. Создание таких ру-ен данных требует затрат на написание/генерацию и чистку. А в открытых сетах для обучения может возникать дисбаланс по ру-ен паре и как следствие превалирование этики из сетов коих больше. Поэтому тот же native/родной после предобучения на таких примерах будет носить знания культуры того языка коего больше. Тк в основном это все переводы с ен языка на ру как есть, да ещё к релевантным для ен языка картинкам. Для того, чтобы решить проблему "перекоса", не достаточно балансировки знаний, надо писать/матчить именно опорные ру тексты с "правильными" картинками к ним,а также придется, скорее всего, прибегнуть к выравниванию поведения — привет alignment/ human feedback и тп. А далее, вооружившись всем этим, нужно будет решать вопросы тюна с эмбеддером text2image, чтобы для языковой пары запрос сводился к "правильной картинке". Именно его представления будут использоваться диффузией как базой генерации. И в тч над этим, думаю, работают исследовательские команды крупных игроков.
Но нет предела совершенству, это непрерывный процесс дообучения и отлова "черных лебедей". Вот как-то так.
Там вышла ллама 3.3
Но самое интересное - цена
По метрикам ± как GPT-4o, но в 25 раз дешевле
Заставляет задуматься
Ого, в профункторе мем на любимую тему @cryptovalerii :)
Читать полностью…#teaching
История про два курса
Когда я учился в университете, в определенный момент у меня в программе был курс функционального анализа - раздела анализа, в котором изучаются топологические пространства (в основном бесконечномерные) и их отображения. Такое вот высокоуровневое развитие привычного всем мат.анализа. Приятная особенность этого предмета в том, что в курсах по нему почти не бывает задач вида «вычислить что-то», только задачи на доказательства и построение примеров довольно абстрактных конструкций. Я, без иронии, был счастлив, что такой курс есть. Меня всегда восхищала красота абстракций, возникающих в математике, и строгих доказательств их свойств при определенных условиях. Разбираться с этим было очень увлекательно и приятно. А вот арифметику я так никогда и не освоил, поэтому радовался, что в кои-то веки на предмете кафедры высшей математики мне не нужно подражать калькулятору.
По этому предмету в моем университете существовало два хорошо сформировавшихся курса, которые читали два разных лектора. Курс более молодого лектора был крайне насыщенным. В нем действительно рассказывалось и доказывалось очень много, как на лекциях, так и на семинарах. Знать все то, что было на этом курсе, было сродни обладанию каким-то невероятным сокровищем, а сам процесс обучения - какое-то запредельное счастье постоянных открытий. И, несмотря на то, что скорость изложения материала зашкаливала, а воспринимать такой плотный поток в принципе затруднительно, предмет был так красив и эстетичен, что награда стоила этих сложностей. Это определенно был очень крутой курс.
Но у меня функциональный анализ вёл другой лектор, существенно старше. Объем материала в его курсе был заметно меньше. И сам курс не производил впечатление очень интенсивного. Звучит хуже? А вот как бы не так. Если первый курс был крутым, то этот курс был гениальным, он был произведением преподавательского искусства. Вместо того, чтобы впихнуть в курс как можно больше, наш лектор (он же был моим семинаристом) оставил время для общения со студентами на занятиях. Нам давали возможность предлагать идеи доказательств, обсуждали с нами возникающие проблемы, давали нам совершать ошибки и помогали учиться на них. Это помогло многим студентам научиться рассуждать на языке математики. Кроме того, курс был насыщен запоминающимися образами. Например, можно было просто формально сообщить слушателям, что значит предъявить эпсилон-сеть для некоторого множества, а можно кроме этого ещё и объяснить, что это то же самое, что целиком осветить парк фонарями, которые освещают круглый пятачок радиусом эпсилон вокруг себя. Детский сад? Может быть. Но образность и осмысленность происходящего позволяла и понимать, и вовлекаться в предмет. И научить нас это помогало.
Последние полгода я часто вспоминаю эти два взгляда на курс. И все чаще задумываюсь, что больше - не значит лучше, ведь «знать» много всего - это, конечно, здорово, но надо же что-то и понимать 🙂 Кроме того, у фокуса на понимание есть приятный бонус: часто достаточно понять совсем немного, чтобы всё остальное стало очевидно и уже не требовало запоминания. Об этом полезно задумываться и преподавателям при подготовке материалов, и слушателям при выборе курсов и траектории обучения в целом.
Через пять минут начинаю вебинар перед запуском второго потока курса "База ML". Расскажу про то, зачем ML аналитикам, менеджерам и разрабам, какой роадмап перехода в ML я считаю правильным, как его пройти самому (!) и как его пройти с нами. И конечно, про курс. Подключайтесь по ссылке, если интересно послушать :) https://mlinside.getcourse.ru/pl/webinar/show?id=3083519
Читать полностью…Отвечаю в этот понедельник в Вышке на каверзные вопросы вместе с Пашей Ворониным, приходите послушать :)
Читать полностью…