Канал Виктора Кантора про Data Science, образование и карьеру в сфере анализа данных. По вопросам сотрудничества: @mariekap РКН: 5140322136
💡Как ML меняет карьеру? — Приглашаем вас на вебинар!
🗓 Когда: 30 ноября (суббота), 17:00 (МСК)
🎙 Спикер: Виктор Кантор — основатель MLinside, эксперт по ML, AI и большим данным
На вебинаре:
🟣Узнаете, как аналитики, разработчики и менеджеры используют ML, чтобы стать незаменимыми специалистами.
🟣Разберётесь, как сделать первый шаг в машинное обучение и превратить его в карьерное преимущество.
🟣Получите рекомендации, как внедрять ML в задачи вашей команды и компании.
🟣Узнаете больше про курс «База ML»: его программу, преподавателей и полезные обновления. Старт курса уже 9 декабря!
🔜 Регистрируйтесь здесь
Присоединяйтесь — стартуем в ML вместе! 🔜
🔍 Доля AI в поиске занимает 6%. А что еще интересного?
Стечение обстоятельств, а также тот факт, что у меня теперь есть Perplexity Pro на год, сподвигли посмотреть, что там на рынке поиска-то происходит. Еще пару лет назад никто не мог подумать, что этот рынок можно как-то переделывать.
1/ Итак, поиск информации вместо Google и других поисковых систем уже проходит через AI решения. Как минимум есть вышеупомянутый Perplexity, а также SearchGPT от OpenAI и поиск через чаты с другими моделями, которые имеют доступ в интернет.
2/ Информации не очень много, но можно запомнить следующее:
▪️Google занимает от 89% поиска как search engine до 91% поиска по разным данным, далее (как ни удивительно) следует Bing с 3.4-4.2%, остальные еще меньше;
▪️Доля AI решений сейчас составляет 6%, но по выручке (в деньгах) это 1%;
▪️Доля Perplexity при этом – 0.5% поиска. Это довольно много, например, доля DuckDuckGo в поиске составляет 0.54%-0.69%.
3/ Доля AI поиска может вырасти с 6% сегодня до 14% в 2028 году.
4/ Кому интересно почитать подробнее про Perplexity, можете зайти вот на этот сайт. Там собрана информация про их бизнес и показатели, например, $40M выручки, 10M MAU, 300M поисковых запросов в 2023 году и так далее.
5/ А вот в этой статье есть прикольное сравнение конвенциального поиска с поиском через AI. Например, результаты поиска через SearchGPT от OpenAI только на 46% совпадают с поиском через Google и на 73% с поиском через Bing.
@proVenture
#research #ai #trends
🫖ИИ-гаджет для одиночек: встречайте gpTea — чайник, который заваривает чай и общается с вами
Я уже писала о том, что мир переживает эпидемию одиночества, и в некоторых странах даже создаются министерства этого состояния. Похоже, рынок гаджетов и ИИ приспосабливается к новому времени: два разработчика из США Кевин Тан и Келли Фанг создали необычный чайный сервиз под названием gpTea.
Принци его действия прост: как только человек поднимает кружку, чайник, оснащенный ChatGPT, становится собеседником и тут же спрашивает, как у вас дела. Чайник может выслушать вас и даже предложит сам рассказать свою историю.
Сервиз состоит из прозрачной чашки и чайника, установленного на подвижную подставку. Пользователю достаточно засыпать чай и налить воду, и гаджет сам и заварит напиток и нальёт его в ёмкость.
Чашка непростая — в нее интегрирован монохромный округлый дисплей, на котором появляются сгенерированные искусственным интеллектом картинки: они иллюстрируют диалог и истории.
Кстати, неправильно будет назвать этот гаджет подарком для одиночек: чайником gpTea могут пользоваться сразу два человека, находящиеся в разных уголках планеты.
Это прекрасно 😂:
https://habr.com/ru/news/860714/
Вообще там, где в одном месте оказываются ML и HR или любая другая чувствительная история, вечно происходят всякие казусы. Например, в одной очень дорогой моему сердцу компании получилось построить модель прогноза оттока сотрудников с очень хорошим lift@k. Но перспективы её использования похоронил первый же руководитель, заставивший своего продажника писать объяснительную на тему «почему ты выгораешь» 😭
🚀 MLinside на конференции «Матемаркетинг 2024» — встречаемся 8 ноября!
Уже совсем скоро, 7 и 8 ноября, в Москве стартует «Матемаркетинг» — масштабная конференция по маркетинговой и продуктовой аналитике с более чем 120 докладами, панельными дискуссиями и экспертными сессиями! 🤯
👥 Кому стоит посетить конференцию?
• Программисты: Если вы хотите расширить свои навыки и использовать ML для более интересных задач на текущем месте работы.
• Аналитики: Если вы стремитесь к карьерному росту и хотите узнать, как ML может улучшить вашу работу.
• Менеджеры: Если вы хотите научиться правильно взаимодействовать с командами ML и управлять проектами более эффективно.
🗓️8 ноября в 15:00 в рамках секции ML в бизнесе от MLinside эксперты поделятся своим опытом и знаниями о том, как машинное обучение меняет работу различных специалистов:
• Виктор Кантор (MLinside) — расскажет о 7 главных способах внедрения ML и их экономическом эффекте.
• Даниил Родионов (МТС) — поделится фреймворком для оценки маркетинговых эффектов с помощью ML.
• Дмитрий Фролов (МТС) — обсудит оптимизацию закупки рекламы и управление ценами bid-а.
• Арина Смирнова (X5 Group) — на примере кейсов покажет, как big data и ML-таргетинг усиливают работу с клиентами.
• Радослав Нейчев (МФТИ) — разберет, как за один день создать прототип RAG и быстро оценить результаты.
📍 Адрес оффлайн-мероприятия: Москва, Раменский бульвар, 1 (Кластер Ломоносов).
✨Откройте для себя последние тренды, обменивайтесь опытом с экспертами и повышайте свою квалификацию.
🔗 https://matemarketing.ru
Вышел эпизод подкаста ТехТок про беспилотный транспорт, смотрим, лайкаем, подписываемся 🏎
https://youtu.be/9tHL9IlMorI?si=GeW46tDm_xt-NpX1
#ML_in_business
🤔Провожу у себя в школе машинного обучения эксперимент: запускаю курс, где будут систематизированы и разобраны топ-10 с точки зрения величины экономического эффекта применений машинного обучения в бизнесе. Это задачи, которые встречаются постоянно в разных компаниях, почти во всех сферах, где активно применяется ML. Конечно это не то же самое, что самому получить этот опыт, но курс должен сильно ускорить процесс погружения и научить смотреть на задачи ML со стороны бизнеса. Ну и кроме того, настолько разносторонний опыт собирается самостоятельно много лет, а тут все будет рассказано сразу: самому интересно как концентрированные в один курс 15 лет опыта ML повлияют на слушателей.
Чтобы курс как можно сильнее перекликался с потребностями аудитории, нам очень нужны добровольцы для участия в опросе и интервью. Буду очень благодарен всем, кто откликнется 🙏
Выложил тизер следующего выпуска нашего подкаста ТехТок. Подписывайтесь на канал, чтобы не пропустить :)
https://youtu.be/TsExpU2C_xg?si=nx3-CtbVU4u2YiPJ
🎉Подкаст про машинное обучение с Женей Соколовым вышел, лайк, подписка, репост :)))
🔥Посмотрите хотя бы только на тайм-коды, чтобы оценить, каким насыщенным вышел диалог:
0:00 - Искусственный интеллект, машинное обучение и data science
3:42 - Начало ML и должен ли ИИ подражать человеку
15:39 - Что не получалось: обучение нейросетей и экспертные системы
20:40 - Классические методы ML
24:42 - ML в играх
28:01 - Как ML спасает жизни
34:39 - Как ML зарабатывает деньги компаниям
40:42 - Возвращение нейросетей: Deep Learning
49:23 - Свёрточные нейросети, рекуррентные нейросети и трансформеры
54:21 - Генеративно-состязательные нейросети
57:01 - Какое оборудование нужно для ML
1:01:48 - Хорошо ли живется специалистам в машинном обучении
1:05:45 - Прогнозы на будущее и подготовка кадров
Смотреть тут: https://youtu.be/q740GwAd9fU?si=iFjFaePGWTKeWCla
#образование
Об индивидуальности понятия «хороший курс»
Однажды мы проводили очную встречу со студентами нашей специализации по ML на Coursera. Ко мне подошел один парень и спросил: почему в России, когда обучают ML, выливают на студента несколько ведер математики, это же совершенно невыносимо. Там именно было сравнение, что вот в западных курсах в течение курса выливают по чашечке, а в Российских вообще не щадят.
Я удивился, наш первый курс был введением в математику и Python, но не то чтобы там было много всего и сложно (на мой судъективный взгляд), наоборот старались облегчить. В ответ на мое удивление парень сказал, что конечно у нас очень много математики, но все равно курс лучше, чем другие курсы по ML на Курсере. Я опять же поинтересовался, а чем же ему самый первый курсеровский курс не угодил (авторства Andrew Ng). Получил шедевральный ответ: да курс вообще дно, там какой-то кореец его читает
Когда я, ошалев от ситуации, сказал что это стенфордский профессор и основатель Курсеры, парень смутился и растворился под хохот толпы других задававших вопросы
Но для себя я запомнил на всю жизнь, что для некоторых людей хороший курс, это когда читает не кореец. Так что нужно быть очень внимательным к оценкам каких-либо курсов слушателями - аргументация, если ее попросить, может вас сильно удивить :)))
Польщен вниманием к обучению «от человека с Физтеха», при том что мы запустили MLinside меньше месяца назад и учим только первую группу студентов, а Karpov.Courses работает уже несколько лет 😂
Но, как говорится, лучше с 7 класса мыслить формулами, чем мыслить формулами из 7 класса :)
Нобелевка за нейронки
Нобелевскую премию по физике выиграли Джеффри Хинтон и Джон Хопфилд. Премию присудили за "Фундаментальные открытия и изобретения, которые способствуют машинному обучению с искусственными нейронными сетями". При чём здесь физика - сложно понять. Похоже, комитет просто пытался хоть куда-то приткнуть нейронки, а физика тут ближе всего. Хотя, по-моему, тут больше бы подошла даже медицина - там хотя бы AlphaFold совершил прорыв в чём-то, а с открытиями в области физики из-за нейронок как-то негусто.
Возможно, причина в том, что Хопфилд всё-таки по образованию физик. Хотя его основной вклад в науку - изобретение сетей Хопфилда, рекуррентных сетей, которые во многом положили начало возрождению нейронных сетей в 80-х и 90-х.
Хинтон изобрёл метод обратного распространения ошибки для тренировки нейронок, который позволил тренировать многослойные сети. А студенты Хинтона - Илья Суцкевер и Алекс Крижевский, создали AlexNet. Именно она начала всю эту гонку нейронок, показав, что их можно масштабировать через тренировку на GPU.
В общем, хайп по нейронкам теперь проник и в Нобелевский комитет.
@ai_newz
#карьера
Правило трех гвоздей
Опытные сотрудники больших организаций (и особенно опытные руководители, у которых есть свое высшее руководство) хорошо знают классическую технику тайм-мендежмента, доставшуюся нам еще от наших дедов. Называется она "правило трех гвоздей".
Восходит она к байке про особенно успешного председателя колхоза, которого однажды спросили, как ему много лет удается справляться со своей работой. В ответ председатель указал на стену и торчащие в ней три гвоздя. Когда распоряжение приходило первый раз, он вешал его на первый гвоздь, когда приходило напоминание - перевешивал на второй, второе напоминание - на третий, и только распоряжения с третьего гвоздя он начинал исполнять. По словам председателя колхоза, большинство заданий руководства не доходило даже до второго гвоздя.
В наше время активных лидеров, трансформирующих большие организации и наводящих суету своей бьющей ключем энергией, адептов правила трех гвоздей не жалуют. И тяжело раскачиваются, и медленно как-то, да и что это вообще значит, что не побежали сразу исполнять, когда было дано задание. Часто такие сотрудники ассоциируются как раз с тем самым "болотцем", кому бы только чаи гонять и на перекуры ходить. Но суть лежит немножко глубже, достаточно посмотреть на все глазами сотрудника. Если вы просите человека что-то сделать, но потом никогда не спрашиваете результат, или спрашиваете через полгода, человек, потративший на это силы, не получает внимания к результатам своего труда. Это обесценивает его работу, появляется чувство "работы в стол". А в стол работать никто не любит, прям совсем никто. Три гвоздя - это естественная защитная реакция.
Вывод очень простой: если не нравятся сотрудники, работающие по правилу трех гвоздей, то придерживайтесь правила "поставил задачу - будь готов принять сделанную работу".
Интервью с Эмели Драль
CTO & Founder Evidently AI, со-автор нашей специализации «Машинное обучение и анализ данных» от МФТИ и Яндекса на Coursera и курса Data Mining in Action - сегодня в 20:00 на ml_inside?si=aAUKLvd9IU72hcK5">канале школы машинного обучения MLinside 🎉
К слову говоря, есть точка зрения, что российские паспорта за уши притянули, просто разработку переводят на индийский офис
Читать полностью…У нас стартует второй поток, тем кто давно хотел попасть в ML - рекомендую :)
Читать полностью…Google: 20 лет развивает AI в поиске и не только
Венчурные инвесторы после бума GPT-моделек: решения на AI вытесняют поиск Google
Google: …
Про недооценку развития технологий
Только в пятницу на лекции в Сколково говорил, что возможно через лет 10 в каждом чайнике будет LLM, а то и вовсе через 2 года. А уже вот. Буквально чайник 😂😂😂
Вообще я уже не первый раз недооцениваю ситуацию с AI. Когда я говорил что беспилотные машины поедут лет через 5 (на уровне интуиции, конечно я плохо представлял конкретно область автономного транспорта), через год уже возле моего дома начали ездить беспилотные машины Яндекса, а еще через год возле работы - машины Сбера.
Если бы меня 4 года назад спросили, когда случится ChatGPT на его уровне качества, я бы ответил либо «лет через 20», либо вообще «никогда».
ML целый день
Только что закончил читать лекцию студентам ФКН ВШЭ про задачи и методы unsupervised learning и осознал, насколько запредельно крутой день у меня сегодня был.
Начался он в 10 утра с чтения двухчасовой лекции в школе управления Сколково про задачи и методы AI от самых основ до того, как нас всех захлестнул Deep Learning, как работает ChatGPT и какие трудности внедрения AI возникают сейчас. Я рискнул добавить кое-каких математических деталей и был шокирован тем, что вовлечение аудитории как будто только выросло по сравнению с сугубо бизнесовой лекцией. Резкий контраст с утверждением Хокинга (со ссылкой на издателя) о том, что каждая формула, включенная в книгу, уменьшает число её читателей вдвое :)
Далее я взял трехчасовое интервью (со всеми перерывами и лирическими отступлениями, а когда смонтируем будет часа полтора-два) у совершенно потрясающего ML рисечера (пока подержу интригу, ждите выпуск на YouTube). Вышел интересный, объемный и полный инсайтов разговор :)
И наконец, получил огромное удовольствие от чтения лекции студентам Вышки. Специально накидал побольше интересного (и местами непростого) материала, чтобы самому не скучать. И внезапно вовлечение было прям на очень высоком уровне для этого контента 😁
Основной вывод во всех трех случаях (в двух я был докладчиком, а в одном в основном слушателем): можно обсуждать хоть какую узкую или более сложную, чем ожидается от ситуации, тему, но если рассказчику она реально интересна, слушатели охотно заражаются этим интересом. И это классно ❤️
Секция по машинному обучению от MLinside на Матемаркетинге
Казалось бы, только 18 сентября мы запускали первый поток нашего первого курса, и вот, не прошло и двух месяцев, как уже организуем секцию по ML на Матемаркетинге💪 Приходите в эту пятницу послушать :)
Онлайн-созвон с командой MLinside👥
Проводим исследование аудитории
↪️Как мы уже говорили ранее, сейчас идет активная подготовка к запуску курса «ML в бизнесе».
В DS/ML 60-70% успеха – это доменная экспертиза. Именно поэтому большинство джунов не берут на работу. Ни один руководитель на практике не будет ставить вам задачи типа «сделай мне регрессию или классификацию на этом датасете" - это слишком просто:)
На курсе мы как раз дадим вам практику работы именно в бизнесе. А также расскажем и покажем, как вы сможете помогать компаниям зарабатывать на ML💸
Эта программа отлично подойдет тем, кто:
▪️освоил базу ML и хочет дальше углубляться в машинное обучение,
▪️не имел коммерческого опыта и хочет практиковаться в применении ML на реальных кейсах,
▪️имел недостаточно опыта работы в бизнесе и чувствует нехватку экспертизы в этой сфере для дальнейшего карьерного роста.
🗣️Для того, чтобы выявить ваши ключевые потребности и понять, что вы хотите получить на курсе «ML в бизнесе», мы решили провести опрос аудитории👇
[ Пройти опрос ]
У каждого участника опроса появится возможность поделиться своим опытом в ML и пообщаться с командой MLinside в формате онлайн-созвона.
Благодаря вашим ответам мы сможем улучшить наполнение курса и доработать программу, чтобы дать вам максимум знаний!
Будем рады пообщаться с каждым из вас и узнать друг друга лучше🤝
Avito ML Cup — это соревнование для ML-инженеров и специалистов в области Data Science, где предстоит создать модель для рекомендаций на основе полусинтетических данных.
🚀Старт: 5 ноября
🔥Призовой фонд: 600 000 рублей.
Участвовать можно как индивидуально, так и в команде до 4 человек. Предлагаемые решения проверяются автоматически по метрике ROC-AUC, а результат будет виден в лидерборде.
Регистрация уже началась, не пропустите возможность! Подробности ➡️ по ссылке.
Немного об итогах опроса
Зачем вообще я его проводил
В разные моменты карьеры мне посчастливилось заниматься всеми перечисленными задачами: многими своими руками, другими - в рамках задач моих подразделений. Это привело к тому, что я давно хотел сделать достаточно исчерпывающий курс по приложениям ML в бизнесе. Мы с Никитой Зелинским (CDS из Big Data МТС) провели первый такой курс весной в МФТИ и ВШЭ и сейчас готовим к запуску адаптированную версию у нас в школе MLinside.
Но одно дело наполнить курс на основе своего опыта и ранжирования задач по экономическому эффекту для бизнеса, и совершенно другое - узнать, а какие задачи ML видят вокруг люди. И здесь было несколько интересных открытий.
Больше денег - меньше хайпа
Самой редко вспоминаемой оказалась история про оптимизацию затрат, которая часто приносит огромный эффект в деньгах. Например, если у вас есть бюджет в 5, 10, 50, 100 млрд рублей в год на расширение сети магазинов в ритейле, базовых станций в телекоме, банкоматов в банке, оптимизация на несколько процентов уже дает огромный эффект в абсолюте.
Работает это так: вы строите модель, которая прогнозирует эффект, а дальше решаете задачу оптимизации поверх этих прогнозов. Иногда оптимизация простая часть и решение строится жадным алгоритмом, а иногда требуется что-то посложнее, но прогнозная модель в основе решения как правило остается. Самые дотошные могут заметить, что сравнивать эффект нужно не с отсутствием оптимизации, а с оптимизацией без ML, но даже так эффекты остаются большими за счет масштаба задачи.
Много хайпа - не очень много денег
Чаще всего вспоминали рекомендательные системы и поиск. В случае с поиском есть конечно небольшое количество компаний в мире, которые нашли там сверхприбыли (и то за счет рекламы), для остальных же поиск не сильно денежная вещь в плане эффектов. Что касается рекомендаций, то даже обожаемый всеми Netflix никогда не репортил публично (на моей памяти, буду рад, если кто-то поправит) эффект от рекомендаций больше 4% от своей выручки. На практике же даже в ритейле подтвержденный A/B тестами эффект в 1-2% на количество покупок и отсутствие статзначимого эффекта на выручку - вполне стандартная история. Конечно, если посчитать какой-нибудь last-click/first-click без учета каннибализации, элементарно нарисовать двузначные эффекты в процентах, а без А/В или с «грамотно организованным» вообще можно показать любые числа. Одна проблема - бизнес больше зарабатывать от этих упражнений в счете не станет.
В чем же секрет популярности рекомендательных систем? Я думаю в том, что мы любим делать то, что любим, а не то, что больше всего надо. В рекомендациях есть где развернуться - тут вам и матричные разложения, и факторизационные машины, и бустинги, и сетки, и reinforcement learning, да и A/B сразу надо учиться быстро проводить. Короче, очень интересно. Не буду отрицать, что я бы сам из всего перечисленного выбрал бы заниматься рекомендациями (и часто выбирал :)). Но к определенному перекосу в восприятии эффектов Data Scientist’ами развитость рекомендательных систем точно приводит.
Опять же, самые дотошные скажут, что таргетирование рекламы это те же рекомендации с правильным взвешиванием, и будут правы. Так что конечно получить большие эффекты можно, но на масштабах всего CRM в компании или в рекламном бизнесе.
Еще одно очень важное наблюдение: рекомендации в контентных сервисах это то, без чего сейчас не получится быть конкурентоспособным. В наше время это базовый инструмент взаимодействия с контентом наряду с поиском, поэтому тут хороший вопрос, что считать эффектом, когда весь бизнес без хороших рекомендаций становится бессмысленным. Ну представьте TikTok без рекомендаций - шляпа какая-то :) Так что с рекомендациями и поиском все сложно: вроде если попытаться посчитать, получается совсем не восторг, а если подумать, часто без них и вообще нельзя.
С остальными задачами тоже есть, что обсудить, но эти поля слишком узки, и кажется я уже приближаюсь к лимиту на длину поста
#ML_in_business
Машинное обучение | Евгений Соколов в подкасте ТехТок
📺 Наконец-то завел на YouTube канал подкаста ТехТок, начинаем выкладывать второй сезон. Одна тема - один гость, посвятивший ей значимую часть своей карьеры и объясняющий на широкую аудиторию, что же это такое, как развивалось, и в каком состоянии технология сейчас.
🧠 Первый выпуск про машинное обучение в целом, в гостях прекраснейший лектор на свете - Женя Соколов. Тизер: https://youtu.be/T7dyUb6Dxqg?si=eFsOqH_ObuIUlcrr
❗️Сам подкаст выйдет на канале завтра в 18:00
«Человек с физтеха вам не всегда поможет войти в IT. Он с седьмого класса мыслит математическими абстракциями. Если вы так не делаете, вам нужен тот, кто прошел этот путь самостоятельно», — рассуждает сооснователь karpov.courses Михаил Серегин, выпускник психфака МГУ и номинант рейтинга Forbes «30 до 30». Основанная им, его другом Бесланом Курашовым и тоже выпускником психфака Анатолием Карповым школа стала лидером в нише обучения data science, или науке о данных — области, в основе которой анализ больших массивов информации и создание моделей, например для прогнозирования спроса.
С 2020 по 2023 год выручка karpov.courses выросла с 18 млн до 417 млн рублей, а среди клиентов появились корпорации, которые готовы платить за обучение своих сотрудников востребованным навыкам работы с данными.
Теперь основатели думают о выходе в новые ниши и обсуждают слияние со стратегическими инвесторами.
О том, как выпускники психфака создали заметную школу data science, читайте на сайте Forbes
📸: Анатолий Карпов (Фото DR)
Еще одна Нобелевка за AI
Кто-то шутил, а кто-то серьезно предполагал, что Нобелевскую премию по химии теперь дадут за AlphaFold. Ну что же, так и произошло: https://naked-science.ru/article/chemistry/nobelevka-po-himii-2024
Коллеги, поздравляю :) Теперь, занимаясь AI, не обязательно оставлять надежды на Нобелевку по естественным наукам 😁 И если Хинтон это пример, когда человек совершает эпические подвиги в науке уже много десятков лет, то AlphaFold показывает, что и прямо сейчас можно что-то крутое прикладное сделать и вскоре получить признание.
Думаю дальше у специалистов в AI будет становиться только больше и больше возможностей для самореализации.
Теперь Хинтон не только отец Deep Learning, но и Нобелевский лауреат 🔥
Читать полностью…▪️От ночного сисадмина до фаундера стартапа с оценкой в десятки $ млн,
▪️Об уходе из Яндекса и открытии своего стартапа,
▪️О плюсах и минусах работы в больших компаниях и много другом.
Интервью с Эмели Драль выйдет сегодня в 20:00 по мск на нашем youtube-канале.
🔔Подписывайтесь и ставьте колокольчик, чтобы не пропустить новое видео!
К слову о Forbes
К слову о Forbes, который я вчера радостно цитировал. Подписывайтесь на каналы людей из списка Forbes 🤩: /channel/addlist/NrULL8pvfjRiMjAy
В 2021 году я стал наверно первым Data Scientist’ом в России на обложке Форбса, и все благодаря тому, что в Россию тогда год как пришел рейтинг Forbes 30 до 30. Его задумка в том, чтобы писать в журнале не только про миллиардеров, но и про амбициозную молодежь, у которой уже что-то крутое получилось, и есть план не останавливаться на достигнутом :) Далее распишу чуть подробнее, зачем это и кто в этих каналах есть.
💯 Зачем вообще подписываться на этих людей?
Главная ценность в Forbes 30 до 30 – это именно сообщество и люди, которые туда попадают – очень талантливые и разносторонние, неравнодушные и амбициозные. Люди, которые могут служить вдохновением для других не только за счет результатов, но и просто своим характером и личными качествами.
Сегодня мы как раз делимся с вами частичкой русскоязычного сообщества – папкой каналов участников Forbes 30 до 30. Нас собралось пока 26 человек (но надеюсь скоро будет больше). Все мы увлечены своей областью и будем крайне рады поделиться своим увлечением с вами.
✨ Кого можно привести в качестве примера из этой папки?
Лично мне очень нравятся:
proVenture: канал Дениса Ефремова, принципала R136 Ventures, о венчурных инвестициях, стартапах и предпринимательстве - всегда очень по делу, обстоятельно, но при этом понятно для всех. У Дениса талант писать про венчур интересно
Радостный бизнес: канал Алисы Пейрис, основательницы Holy Corn, про бизнес, который приносит радость и мой любимый самый вкусный попкорн 😁
И, конечно
tldr_tany: ведет Таня Савельева, предприниматель, AI эксперт (а еще моя бывшая студентка на курсе Data Mining in Action и сотрудница в Яндекс.Такси, поэтому радуюсь всем её успехам вдвойне 🫶🏼) - 10 лет назад была AI разработчиком, потом заработала своей компании $20M и сэкономила $100M, увидела в этом идею для бизнеса и стала серийным СЕО AI-стартапов 💪 В канале пишет внезапно все, что думает, что в случае человека с её насыщенностью жизни и карьеры - самое лучшее, рекомендую :)
В папке также есть еще 20+ каналов от крутых ребят, основателей компаний, действующих инвесторов, уникальных ученых с опытом как в России, так и за рубежом.
📂 Чем удобен формат папки? Вы получаете доступ сразу к огромному количеству качественного контента. Конечно, не все окажется для вас подходящим – почитайте, выберете из папки те каналы, которые окажутся для вас наиболее релевантными. Но вам всегда удобно будет вернуться – закладка будет всегда у вас в Telegram.
🔗 Присоединяйтесь к папке по ссылке: /channel/addlist/NrULL8pvfjRiMjAy
Тем временем в чате бывших сотрудников ABBYY весь день
Читать полностью…