inspace | Technologies

Telegram-канал inspace - В Космосе

2712

Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Канал о космосе и всем, что с ним связано. Админ: @TELEHAN Прайс: telega.in/c/inSpace Ещё каналы: hanmedia.me/tg

Subscribe to a channel

В Космосе

– Если кто и помнит – все равно его примут за психа. Мы проникли к ним в головы и разгладили мясо таким образом, чтобы они воспринимали нас как сновидения.

– Сны у мяса… Подумать только – мы снимся мясу!

– И тогда весь этот сектор на карте можно отметить как необитаемый.

– Отлично! Полностью согласен. Как официально, так и между нами. Дело закрыто. Других нет? Что там еще забавного, на той стороне Галактики?

5.Гипотеза симуляции.

Нас никто не посетил, потому что мы живем в компьютерной симуляции — и эта модель не содержит никаких внеземных компаньонов для нас.

Если это правда, то из нее вытекает несколько важных вещей. Во-первых, эти бандиты — или боги, как посмотреть — устроили все так, что мы единственная цивилизация в целой галактике (или даже Вселенной). Или настоящей Вселенной там просто нет, нам отсюда кажется, что мир огромен, но это смоделированный пузырь. Если дерево падает в лесу, но никто не слышит звук его падения, издает ли оно звук?

Еще одна странная возможность заключается в том, что эта симуляция запущена постчеловеческой цивилизацией в поиске ответа на парадокс Ферми, или еще какой-нибудь странный вопрос. Возможно, пытаясь проверить различные гипотезы (даже превентивно рассматривающие возможность определенного действия), они запускают миллиард разных симуляторов, пытаясь определить нужные им варианты.

6.Тишина в эфире.

Эта теория похожа на гипотезу карантина, но не настолько параноидальна. Не настолько, но параноидальна. Вполне возможно, что все нас слушают, но связаться никто не пытается. И по весьма хорошим причинам.

Дэвид Брин предполагает, что практика Active SETI похожа на крик в джунглях (Active SETI — преднамеренная передача радиосигналов высокой мощности в сторону возможных звездных систем с жизнью). Майкл Мишо считает точно так же: «Давайте будем честны, Active SETI — это не научное исследование. Это сознательная попытка спровоцировать реакцию со стороны чуждой цивилизации, чьи возможности, намерения и удаленность от нас нам неизвестны. Это политическая проблема». Озабоченность выражается главным образом в том, что мы можем привлечь к себе преждевременное внимание. Возможно, в один прекрасный день мы прекратим все попытки связаться с инопланетянами. Но что, если каждая цивилизация в космосе прошла через точно такую же лестницу? Это значит, что в эфире будет тишина».

Возможно, даже прослушивание эфира может быть опасным: где гарантии, что SETI не загрузит вредоносный вирус из далекого космоса?

7.Все пришельцы — домоседы.

Этот вариант не столько странный, сколько возможный. Развитые внеземные существа по достижении цивилизации II типа по шкале Кардашева могут потерять все галактические амбиции. Как только будет построена сфера Дайсона или что-то вроде того, у неизвестных нам инопланетян начнутся неизвестные нам веселья. Массивные суперкомпьютеры смогут имитировать вселенные внутри вселенных, жизненные циклы внутри жизненных циклов. Остальная часть вселенной покажется скучной и пустой. Космос превратится в зеркало заднего вида.

8.Мы не можем прочитать знаки.

Вполне возможно, что сигналы и знаки от внеземных цивилизаций вокруг нас, но мы их просто не видим. Или мы глуповаты, чтобы заметить их, или нам нужны дополнительные технологии. В соответствии с текущим подходом SETI, нам нужно слушать в ожидании радиосигнатур. Но цивилизации, которые намного развитее нас, могут использовать совершенно другую технику. Они могут сигнализировать лазерами, к примеру. Лазеры хороши, потому что представляют собой плотно сфокусированные лучи с прекрасными возможностями передачи информации. Они также могут проникать через пыльную межзвездную среду.

Или же внеземные цивилизации могут использовать «визитные карточки», используя прямые методы обнаружения (то есть строить массивные идеальные геометрические структуры вроде треугольника или квадрата на орбите вокруг своей звезды).

Читать полностью…

В Космосе

Большинство людей считают само собой разумеющимся, что мы до сих пор не вступили в контакт с внеземной цивилизацией. Правда, они не знают о том, что пора бы. Наша Галактика настолько стара, что каждый ее уголок должны были посетить много, много раз к нынешнему моменту. Ни одна из теорий, выдвинутых до сих пор, не может удовлетворительно объяснить эту грандиозную тишину. Мы подробно изучали возможные объяснения парадокса Ферми, но теперь, похоже, пришло время обращаться к самым невозможным вариантам.

Когда решения нет даже на бумаге, оно может быть совершенно любым. Стандартные объяснения парадокса Ферми хорошо известны, мы не будем к ним обращаться. Среди них — гипотеза «редкой Земли» (предположение, что жизнь — исключительная редкость), понятие сложности космических путешествий и безумно большие расстояния, гипотеза Великого фильтра (предположение, что все достаточно развитые цивилизации уничтожают себя, прежде чем выйдут на межгалактический уровень), или что мы просто недостаточно интересны.

Но иногда ответ на странный вопрос может быть не менее странным. В таком контексте вопрос «Где все?» будет чрезвычайно странным, поскольку на него пока не нашли ответы. И вот варианты.

1.Гипотеза зоопарка.

Хотя все это звучит как сюжет эпизода «Зоны сумерек», вполне возможно, что мы застряли в некоторой небесной клетке. Внеземные цивилизации могли наткнуться на наш голубой шарик давным-давно, но по какой-то причине наблюдают за нами издалека. Может быть, мы для них просто развлечение (как обезьяны в зоопарке) или мы нужны им для научных целей. Как бы то ни было, они нас не трогают и стараются не вступать в контакт.

Эту идею впервые предложил Джон Болл в 1973 году, который утверждал, что внеземная разумная жизнь может быть повсеместной, но «неудачные попытки связаться с нами можно понимать в контексте того, что они оставили нас в стороне, словно заповедник или зоопарк». Мы можем быть частью огромного заповедника, пределов которого почти нет, или эти пределы достаточны для невозмутимого развития разумной жизни. Эта идея напрямую соответствует «Первой директиве» из «Звездного пути» — цивилизации предоставлены сами себе, пока не достигнут определенного уровня технологического развития. Этой же идеи придерживаются уфологи, утверждая, что инопланетяне повсюду, но наблюдают за нами издалека.

2.Добровольный карантин.

Это своего рода противоположность гипотезе зоопарка. Инопланетяне вполне могут быть опасными. Крайне опасными. Таким образом, вместо того чтобы разъезжать по галактике на космических кораблях и надеяться, что каждый встречный будет супердружелюбным, внеземные цивилизации коллективно и независимо пришли к выводу сидеть тихо и не привлекать внимания.

Почему бы и нет? Было бы вполне разумно заключить, особенно в свете парадокса Ферми, что космос кишит опасностями — будь то империалистическая цивилизация на марше или война зондов-берсеркеров, стерилизующая все на своем пути. Чтобы быть уверенными, что никто не побеспокоит их, продвинутые внеземные цивилизации могут выстраивать периметр из зондов Сэндберга (самореплицирующихся полицейских зондов), чтобы убедиться, что никто не пройдет.

3.Гипотеза мушки на мушке.

Представьте, действует некая «Первая директива», но внеземные цивилизации нависают над нами с гигантскими молотками, готовые прихлопнуть нас сразу, как только что-то пойдет не так, как им хочется. Такие инопланетяне будут чем-то вроде Горта из «Дня, когда Земля остановилась», будут стараться сохранить мир галактики любой ценой. «Нет пределов тому, что может сделать Горт, — говорил Клаату. — Он мог бы уничтожить Землю». Чего же ждет Горт или другие продвинутые внеземные цивилизации? Возможно, технологической сингулярности. Сингулярность может привести к появлению искусственного сверхинтеллекта (ИСИ), который может стать угрозой для всей галактики. Таким образом, чтобы предотвратить развитие таких плохих интеллектов — и давая шансы хорошим интеллектам на развитие — галактический молот занесен и ждет сигнала.

Читать полностью…

В Космосе

😂Юмор:

«SMS Приколы :D»
/channel/smski

«Трахни нормальность»
/channel/trahninormalnost

«БОРЩ»
/channel/borscha

«Лепра»
/channel/leprame

«Ёбаный пиздец»
/channel/fuckhumor

Юмор вождя «Иосиф Сталин»
/channel/JStalin


🎥Видео:
Музыкальные видео «VEVO»
/channel/VEVOcom


🙏Самопознание:

Психология
/channel/psychologya

Фрейдизм «Зигмунд Фрейд»
/channel/Sigmund_Freud

Философия
/channel/philosophya

Буддизм «Будда»
/channel/abuddha


🤓Для мозгов:

Канал для тех, кто думает своей головой «Атеист»
/channel/The_Atheist

Канал о космосе «Space»
/channel/inspace

Канал «The Brains» прокачай мозги!
/channel/the_brains

Канал о «Науке и технике»
/channel/sciencea

Научные знания «Альберт Эйнштейн»
/channel/AEinstein

Пропаганда здравого смысла - Движение «The Bright»
/channel/the_brights

Канал о эволюции «Чарльз Дарвин»
/channel/charles_darwin

Самые полезные знания
/channel/obrazo


🤔Саморазвитие:

Проект «#ябсъездил»
/channel/thetravel

«TED Talks»
/channel/TED_Talks

Школа саморазвития «Skill»
/channel/skillon

Ваш духовный путеводитель «EZO»
/channel/ezoterika


🤑Бизнес:

Канал о бизнесе «Бенжамин Франклин»
/channel/Franklin_Benjamin


😎Стиль:

Мужские луки «ManLook»
/channel/manlook


💻📱Технологии:

Новости компании «Apple»
/channel/inApple

Новости «Android»
/channel/New_Android


🔞18+:

Журнал самых сексуальных девушек «PRAYFORSEX»
/channel/PRAY4SEX

Читать полностью…

В Космосе

Просто космос! Какими камерами фотографируют на орбите.

Самые удивительные и вдохновляющие фотографии делают не на Земле, а в сотнях и тысячах километров от её поверхности. Счастливчики, исполнившие мечту стать космонавтом, не прочь посмотреть на звёзды и нашу планету через видоискатель камеры. Мы узнали, как и чем снимают в космосе, а также нашли место с залежами бесплатных Hasselblad-ов

Вы, наверное, уже видели ролик, в котором астронавты с международной космической станции забавляются растворением шипучих таблеток в невесомости. Это одно из первых видео из космоса в высоком качестве, снятое камерой RED Epic Dragon, которая была доставлена на МКС еще в январе.

Фотоаппарат как космический мусор.

Как шутил один мой знакомый, есть только одно место, где камеру Hasselblad можно взять бесплатно – поверхность Луны. Именно шведскому производителю посчастливилось стать официальным поставщиком съемочной техники для программы «Апполон». Снимки, полученные с лунных «Хассельбладов» стали важнейшими документальными свидетельствами. Таких камер было несколько, они доставлялись на Луну в разное время (с 1969 по 1972 год) и остались лежать там, поскольку их возвращение на Землю было бы слишком затратным и рискованным. Сейчас там остается 12 фотоаппаратов.
Однако одна камера Hasselblad 500 все же вернулась на Землю и пару лет назад ушла с молотка за 660 тысяч евро. Обладателем реликвии стал Терукадзу Фудзисава, основатель японской розничной сети Yodobashi Camera. Не факт, кстати, что эта сумма покрыла затраты на возвращение камеры с Луны.
Важно понимать, что выбор техники для космоса – процесс ответственный. Все снимки, за исключением изображений с космических телескопов и автоматических аппаратов, делались экипажем международной космической станции. Космонавт (или астронавт) не может взять удобную для себя камеру и пользоваться ей в ходе миссии. Он лишь получает доступ к технике, уже имеющейся на станции, набор которой медленно, но верно обновляется.
Эра Hasselblad в космосе закончилась, сейчас там главенствует Nikon, имея соответствующие договоренности с NASA, JAXA и Роскосмосом.

Фотографы МКС

Доподлинно неизвестно, сколько именно камер сейчас находится на Международной космической станции, но все они произведены Nikon и относятся к топовому классу. В разное время на МКС завозились разные камеры. Из цифровых камер сначала доставлялись Nikon D1 и D100, потом в распоряжение экипажа поступили Nikon D2Xs, затем D3x и D3s. Последние полноценно используются и по сей день. Объективы на МКС покрывают фокусные расстояния от 18 до 800 миллиметров. Более того, на станции сохранился пленочный Nikon F5, который иногда используется в научных целях. Проявляют пленку уже на Земле. С цифровыми камерами в этом плане дело обстоит проще: часть снимков передается на землю по каналам связи, а все оригиналы возвращаются на картах памяти в специальных защитных боксах.
Главная особенность состоит в том, что цифровую камеру никоим образом модифицировать не нужно – она прекрасно работает в условиях невесомости. Правда, есть некоторые тонкости. Например, в распоряжении членов экипажа МКС есть камеры с отсутствующим инфракрасным фильтром. Одна из них сделана на базе Nikon D3s (во избежание путаницы логотип Nikon закрашен красным маркером) и используется в связке с обычной камерой для получения одинаковых снимков.
Съемка через иллюминатор – занятие нехитрое. Самым сложным становится выбор нужного ракурса и выжидание подходящего момента. Например, во время наблюдения восхода Солнца освещение очень быстро меняется. Нужно учитывать облачность и прозрачность атмосферы – порой подходящих условий нужно дожидаться часами. Съемка во время выходов в открытый космос тоже делается обычной камерой, правда она предварительно одевается в герметичный чехол белого цвета — это защищает камеру от чрезмерного нагрева под яркими лучами. Объектив же выбирается под конкретные задачи. Для фиксирования работ по ремонту МСК чаще всего используется широкоугольная оптика.

Читать полностью…

В Космосе

Ранняя Вселенная.

На самой ранней стадии эволюции Вселенной относительно долгие периоды расширения и охлаждения перемежались краткими периодами фундаментальной перестройки материи.

Со времени открытия закона Хаббла в научной космологии возобладала точка зрения, согласно которой Вселенная возникла в виде горячего сгустка сверхплотной материи и с тех пор расширяется и остывает. Но лишь с начала 1980-х годов космологи по-настоящему задумались над тем, как именно развивались события на самой ранней стадии расширения Вселенной. Сегодня мы имеем уже достаточно полную хронологическую картину ранней истории Вселенной, начиная с невообразимо малых долей секунды после Большого взрыва, объясняющую происхождение элементарных частиц и химических элементов. Давайте прокрутим события в обратной хронологии, начиная с 1 миллиарда лет после Большого взрыва (все сроки весьма условны) и вплоть до самого взрыва.

1 миллиард лет
Началось формирование галактик. Впервые в истории Вселенная стала отдаленно напоминать то, что мы наблюдаем сегодня. Уже следующее поколение сверхмощных телескопов позволит нам рассмотреть галактики, удаленные настолько, что они предстанут перед нами на стадии непосредственно после их рождения.

300 000 лет
Примерно через 300 000 лет после Большого взрыва Вселенная остыла достаточно для того, чтобы электроны начали прочно удерживаться ядрами и появились стабильные атомы, не распадающиеся сразу же после соударения со следующим ядром. Постепенно формирование атомов из моря свободных ядер и электронов привело к образованию всего многообразия наблюдаемых нами сегодня во Вселенной химических элементов.

До образования первых атомов Вселенная состояла из непрозрачной и плотной ядерно-электронной плазмы. Любые сгустки такой плазмы, едва начав образовываться под воздействием сил гравитационного притяжения, тут же разрушались под воздействием энергии поглощаемого ими излучения. После формирования атомов пространство Вселенной стало прозрачным, а вещество — достаточно разреженным для образования устойчивых сгустков материи под воздействием сил гравитационного притяжения. Увы, уже слишком разреженным для начала формирования галактик, и этот парадокс, получивший название галактическая проблема, явился самым весомым аргументом против теории Большого взрыва. Проблема эта, однако же, устраняется, если ввести в сценарий формирования Вселенной темную материю. Тогда можно считать, что первичные ядра галактик образовались именно из этой невидимой темной материи (свойства которой принципиально отличаются от свойств обычной материи) еще до формирования атомов, а образовавшиеся позже атомы «прилепились» к уже готовым протогалактикам, состоящим из темного вещества.

3 минуты
В первые три минуты существования Вселенной, стоило двум элементарным частицам — протону и нейтрону, например, — образовать ядро, как оно тут же разбивалось при следующем столкновении. Начиная с четвертой минуты Вселенная остыла до такой степени, что энергий столкновения стало недостаточно для разрыва внутриядерных связей, и стали образовываться стабильные ядра. Итак, в первые три минуты Вселенная представляла собой раскаленное море элементарных частиц, а по прошествии трех минут в нем стало появляться всё больше островков-ядер.

В процессе соударений с новыми элементарными частицами ядра постепенно утяжелялись за счет прикрепления к ним каждый раз протона или нейтрона. Однако на этой стадии сформировались ядра лишь самых легких химических элементов, поскольку вскоре Вселенная расширилась уже настолько, что столкновения стали огромной редкостью. То, что теория Большого взрыва верно предсказывает соотношение ядер этих легких элементов, сформировавшихся за время короткого «окна» первичного нуклеосинтеза, является надежным (и очень красивым) подтверждением правильности этой теории.

10(–5) секунды

Читать полностью…

В Космосе

Можно разрезать квитанцию за электричество, но невозможно уничтожить информацию, бросив ее в черную дыру. Отчасти это потому, что хотя квантовая механика имеет дело с вероятностями — вроде вероятности нахождения электрона в одном или другом месте — квантовые волны, которые дают эти вероятности, должны развиваться предсказуемо, так что если вы знаете форму волны в один момент, вы можете предсказать ее точно в любое время в будущем. Без такой «унитарности», квантовая теория производила бы бессмысленные результаты вроде вероятностей, которые в сумме составляют не 100%.

Предположим, вы бросаете несколько квантовых частиц в черную дыру. На первый взгляд, частицы и информация, которую они содержат, теряются. И это проблема, поскольку часть квантового состояния, описывающая комбинированную систему частиц и черной дыры, была уничтожена, что делает невозможным предсказание точной эволюции и нарушает унитарность.

Физики думают, что нашли выход. В 1974 году британский теоретик Стивен Хокинг утверждал, что черные дыры могут излучать частицы и энергию. Благодаря квантовой неопределенности, пустое пространство на самом деле не пустое — оно полно парных частиц, периодически приходящих к существованию и исчезающих. Хокинг понял, что если пара частиц, появившихся из вакуума, попадут на границу черной дыры, одна улетит в космос, а другая упадет в черную дыру. Унося энергию черной дыры, утекающее излучение Хокинга приводит к тому, что черная дыра медленно испаряется. Некоторые теоретики думают, что информация появляется снова, будучи закодированной в излучении черной дыры — впрочем, это совершенно непонятный момент, поскольку излучение кажется совершенно случайным.

И вот Айдан Чатвин-Дэвис, Адам Джермин и Шон Кэрролл из Калифорнийского технологического института в Пасадене нашли хороший способ получить информацию от одной квантовой частицы, потерянной в черной дыре, используя излучение Хокинга и странную концепцию квантовой телепортации.

Квантовая телепортация позволяет двум партнерам, Алисе и Бобу, передать деликатное квантовое состояние одной частицы вроде электрона другой. В квантовой теории, спин электрона может быть направленным вверх, вниз или вверх и вниз одновременно. Это состояние можно описать точкой на глобусе, где северный полюс означает верх, а южный полюс означает низ. Линии широты означают разные смеси верха и низа, а линии долготы означают «фазу», или как скрещиваются верхние и нижние части. Но если Алиса попытается измерить это состояние, оно «коллапсирует» по одному или другому сценарию, вверх или вниз, уничтожив информацию о фазе. Поэтому она не может измерить состояние и отправить информацию Бобу, а должна отправлять его нетронутым.

Для этого Алиса и Боб могут обменяться дополнительной парой электронов, соединенных особой квантовой связью — запутанностью. Состояние каждой частицы в запутанной паре не определено — оно одновременно указывает в любую точку глобуса — но их состояния коррелируют, поэтому если Алиса измерит свою частицу из пары и обнаружит, что та вертится, скажем, по направлению вверх, она мгновенно узнает, что электрон Боба вертится сверху вниз. Итак, у Алисы два электрона — один тот, состояние которого она хочет телепортировать, и ее половина запутанной пары. У Боба есть только один из запутанной пары.

Чтобы выполнить телепортацию, Алиса использует еще одно странное свойство квантовой механики: что измерение не только показывает что-то о системе, но и меняет ее состояние. Поэтому Алиса берет два своих незапутанных электрона и производит измерение, которое «проецирует» на них запутанное состояние. Это измерение разрушает запутанность между парой электронов, имеющихся у нее и у Боба. Но в то же время оно приводит к тому, что электрон Боба оказывается в состоянии, в котором был электрон Алисы, который она должна была телепортировать. Посредством правильного измерения Алиса как бы переносит квантовую информацию с одной стороны системы на другую.

Читать полностью…

В Космосе

Вообще, всем кто интересуется космонавтикой и занимается, либо хочет когда-либо заняться разработкой космической техники, настоятельно рекомендую прочесть запись в блоге миссии Rosetta в оригинале. Это настоящий космический детектив!

Я попробую дать краткий пересказ:
В июне 2015 года Rosetta принялась передавать сигналы на комету, ожидая получить ответ от Philae. Предыдущие попытки в марте закончились неудачей, поэтому 11-12 июня пришлось собрать инженерную группу и обсудить перспективность новых попыток выйти на связь. И через день Philae ответил!

Пока мы радовались хорошим новостям, ученые и инженеры миссии пытались продиагностировать сидящий аппарат и оптимизировать траекторию летающего. Для возвращения к научной деятельности в нормальном режиме, требовалось принять объем телеметрических данных – записи сведений о состоянии Philae от момента его повторного включения и до момента установления связи. В очереди стояло примерно 8 тыс. пакетов телеметрии, на передачу которых потребовалось бы 40 минут прямой связи. Проблема была в том, что первый сеанс связи длился всего 78 секунд; второй сеанс – 4 минуты; третий – 19 минут. Но проблемы не заканчивались и сеансы связи проходили с частыми сбоями, в результате, удавалось передавать ограниченное количество пакетов телеметрии.

В то же время, принятые данные позволили определить, что первое пробуждение Philae состоялось еще 26 апреля, потом 5 и 6 мая, а потом уже 13 июня по сигналу с Rosetta. Счет на борту ведется в “Comet day”, которые длятся 12,5 часов.

Данные с солнечных батарей позволяли установить интенсивность освещения каждой панели и помогали определить точнее расположение аппарата относительно стенок трещины.

Телеметрия за эти дни указывала на устойчивый рост бортовой температуры, что являлось показателем приближения к Солнцу. Это было хорошей новостью, т.к. глубокий мороз препятствовал работе аппарата.

С другой стороны, анализ двух бортовых радиопередатчиков показал, что один из них пережил короткое замыкание, и вышел из строя.

Надежда оставалась на второй. В июне Rosetta провела несколько сеансов связи с Philae с расстояния 180-200 км, но ей так и не удалось найти оптимальный режим и траекторию, для стабильного контакта. В июле комета еще ближе подлетела к Солнцу, и Rosetta была вынуждена держаться подальше от ядра, чтобы пыль не забила оптику камер и звездных датчиков. И Philae не отвечал.

Инженеры решили, что второй радиопередатчик тоже закоротило. Это поставило бы крест на дальнейшей работе с аппаратом. Но была возможность еще более фатального сценария, когда вышли из строя и приемники. Чтобы проверить слышит ли Philae сигналы Rosetta, приняли решение использовать радар CONSERT. Идея была такова: если приемники еще работают и аппарат в целом функционирует, то ему передают команду задействовать георадар. Rosetta принимает сигналы радара чем подтверждает, что Philae еще жив.

Команду отправили... И не получили ответа CONSERT. Зато сразу смогли восстановить связь с аппаратом на расстоянии 155 км, т.е. один радиопередатчик все еще функционировал. Аппаратам удалось в течение 17 минут поддерживать стабильную связь. Инженеры скачали всю накопленную в очереди телеметрию, и, казалось, ничто не мешало продолжать научную работу.

Но у Rosetta была и своя научная программа. 25 июля ей предстояло перебраться другую траекторию, для изучения противоположного полушария кометы, что исключало возможность установления связи. 13 августа комета прошла ближайшую точку с Солнцем и стала постепенно отдаляться. Чуть позже Rosetta ушла от ядра кометы на 1,5 тыс км - держалась подальше от пыли и пыталась изучить ударную волну комы.

Всю осень 2015 года оставалась надежда связаться с Philae еще раз. По крайней мере физические условия на комете не должны были препятствовать этому. Однако связаться не удалось до сих пор. Сейчас комета 67P/Чурюмова-Герасименко уже удалилась дальше орбиты Марса.

Читать полностью…

В Космосе

Звездная колыбель.

На снимке - отражательная туманность IRAS 00044 + 6521, в которой расположилась новорожденная звезда HBC 1, свет от которой отражается от пылинок, входящих в состав газовых облаков. Кроме того тут есть три объекта Хербига-Аро - HH 943, HH 943 B и HH 943A, которые представляют собой молодые звезды, генерирующие противоположно направленные высокоскоростные выбросы, которые сталкиваются с близлежащими газовыми облаками и вызывают их свечение.

Снимок Космического телескопа "Хаббл".

Читать полностью…

В Космосе

Древний человек по-разному именовал этот таинственный светящийся пояс. Одни народы его называли Дорогой Богов, другие — Звездным Мостом, ведущим в райские кущи, третьи — волшебной Небесной Рекой, наполненной божественным молоком, дарующим бессмертие. По этой причине ему поклонялись, в его честь возводили храмы и другие культовые сооружения.

Жители же античной Греции назвали Млечный Путь «Galaxias kyklos», что в переводе с греческого означает «молочный круг». Кстати, от греческого названия Млечного Пути и происходя хорошо знакомое нам слово «галактика».

Глядя на почти однородную и бескрайнюю арку Млечного Пути и разбросанные поодиночке звезды, сразу возникает несколько вопросов. Например: что же представляет собой Млечный Путь? Почему он светится, да к тому же светится неоднородно? Почему сначала льется по одному широкому руслу, а потом вдруг разделяется на два рукава?

Эти вопросы появились у людей науки уже более двух тысяч лет назад. Так, пытаясь разгадать тайну Млечного Пути, великий древнегреческий Платон называл его швом, который соединяет в одно целое небесные полушария. Два других античных философа — Демокрит и Анаксагор — считали, что его освещают звезды, а Аристотель в свою очередь утверждал, что его свечение связано со светящимися парами, исходящими от Луны.

Очень оригинальное и смелое предположение выдвинул римский поэт Марк Манилий: он высказал мысль, что Млечный Путь — это сияние множества маленьких звезд. И, как выяснилось позднее, поэт был очень близок к истине...

Прошли многие столетия, прежде чем Млечный Путь наконец-то, стал приоткрывать астрономам свои первые тайны.

И случилось это, можно сказать, впервые в 1610 году. Именно тогда, более четырех столетий назад, великий Галилео Галилей, направив на Млечный Путь свой первый телескоп, увидел в нем «необъятное скопище звезд», которые для невооруженного взора казались сплошной белесой лентой.

Глядя на эту удивительную реку света, Галилей понял, что сетчатая и даже клочковатая структура Млечного Пути связана с тем, что он состоит из великого множества звездных скопление и темных облаков. Именно их комбинация и создает ту неповторимую картину Млечного Пути, которая видится земному наблюдателю.

Но вот почему звезды собраны в длинную и узкую ленту, ответить в то далекое время никто не мог.

В следующем столетии исследованию Млечного Пути немало времени посвятил выдающийся английский астроном Вильям Гершель. И хотя он был музыкантом и композитором, тем не менее в астрономии сделал столько открытий, которых бы с лихвой хватило на добрую дюжину ученых мужей.

Что же касается Млечного Пути, то Гершель, опираясь на свои наблюдения, сделал вывод, что это своего рода звездный остров во Вселенной, в котором находится и наше Солнце.

Эту свою гипотезу астроном даже изобразил в виде схематического рисунка, из которого следует, что наша звездная система представляет собой вытянутую структуру неправильной формы похожую на огромный жернов. А так как этот жернов обхватывает наш мир по всей окружности, то, следовательно, внутри этого звездного кольца находится Солнце, расположенное ближе к его центральной области.

Именно эта картина, изображенная Гершелем на рисунке, властвовала в умах ученых практически до середины прошлого столетия.

Разрушил это устоявшееся представление американский астрофизик Харлоу Шепли, занимавшийся изучением шаровых звездных скоплений. Исследователь установил, что они всегда находятся вблизи галактических ядер. Далее Шепли предположил, что если процессы и явления во Вселенной подчиняются единым законам, то они действуют и в нашей Галактике. Приняв эти положения за отправные точки, ученый отыскал в ее шаровых скоплениях цефеиды и определил расстояние до них. И, вопреки теории Гершеля, Солнце оказалось расположенным отнюдь не в центре Млечного Пути, а на его периферии, в своего рода звездной провинции, на расстоянии в 25 тысяч световых лет от его центральной области.

Читать полностью…

В Космосе

Второй по величине кусок Марса на Земле в частных руках

Трехкилограммовый фрагмент метеорита DaG 1037 найденный в 1999 году в ливийской пустыне Дар аль Гани. Минералогический состав метеорита примерно соответствует составу базальтовой марсианской породы, изученной марсоходами. Изотопный состав кислорода, содержащегося в метеорите, соответствует изотопному составу кислорода марсианской атмосферы, измеренной станциями Viking. Всё это позволяет отнести находку к классу шерготтитов, т.е. метеоритов, прилетевших с поверхности Марса.

По оценкам ученых, метеорит стартовал с Марса около 1 млн лет назад, в результате астероидного удара, и упал в Сахару около 60 тыс. лет назад.

Данный образец находится в частной коллекции американского бизнесмена Steve Jurvetson.

Читать полностью…

В Космосе

Фальшивая катастрофа галактических масштабов.

На первый взгляд может показаться, что эти галактики сливаются. Однако это всего лишь иллюзия. Расстояние между карликовой голубой галактикой ESO 489-056 и парой сливающихся в реальности двух спиральных галактик оценивается в миллионы световых лет.

Снимок Космического телескопа "Хаббл".

Читать полностью…

В Космосе

Тогда выяснилось, что объект 3753 Круитни является астероидом, который через каждые 364 дня совершает полный оборот вокруг Солнца (то есть находится в орбитальном резонансе 1:1 с нашей планетой). Другими словами, каждый год этот 5-километровый астероид становится частью системы Земли. Своей ближайшей точки расположения относительно Земли Круитни достигает в ноябре. С технической точки зрения, этот астероид нельзя называть луной, так как он каждый раз то приближается, то отдаляется от Земли. Но идеальный орбитальный резонанс с планетой позволяет ему оставаться вблизи планеты на протяжении многих орбитальных периодов.

Читать полностью…

В Космосе

Хаумеа

Перед получением своего официального имени карликовая планета 136108 Хаумеа была известна под прозвищем «Санта». Получила она его в результате того, что была обнаружена сразу после Рождества, 28 декабря 2004 года. Прозвище, следует отметить, весьма удачное, потому что Хаумеа действительно является уникальной карликовой планетой. Сперва ученые отметили, что выяснить точные размеры карликовой планеты является весьма трудной задачей ввиду скорости ее вращения. Она обладает самой высокой скоростью вращения среди известных объектов Солнечной системы — день на планете длится всего около 3,9 часа.

Скорость вращения при этом явилась для ученых не самой большой проблемой в вопросе выяснения ее размеров. Больший интерес вызвала ее форма. Хаумеа, состоящая из породы и льда и обладающая очень низкой гравитацией, для того чтобы удержать все это вместе, имеет сильно вытянутую форму. В итоге оказалось, что дистанция между полюсами карликовой планеты составляют 996 километров, однако длина его самой большой оси составляет 1960 километров.

Еще одним интересным фактом о карликовой планете Хаумея является то, что она обладает двумя спутниками — Хииака и Намака. Весьма недурно для космического тела, представляющего собой всего 6 процентов массы Луны, спутника нашей Земли.

Пан и Атлас

Эти два спутника Сатурна имеют много общего между собой и наиболее близко расположены к планете, вокруг которой они вращаются. Особенными делает эти два космических объекта факт того, что они являются своего рода спутниками-«пастухами» кольца Сатурна. Они, воздействуя своей гравитацией, отталкивают от себя или, наоборот, притягивают к себе частицы кольца планеты, не позволяя им от себя уходить. Они как бы «пасут» эти частицы. Спутник Пан, кстати, и получил свое название в честь древнегреческого бога Пана — покровителя пастушества и скотоводства, плодородия и дикой природы.

Размеры спутника Атлас еще меньше. От полюса до полюса расстояние составляет всего 19 километров, а диаметр — около 46 километров. Выглядит он как летающая тарелка. Столько необычная продолговатая форма обоих спутников, по мнению ученых, не может объясняться тем же способом, как и в случае Хаумеи, так как скорость их вращения недостаточно быстра для этого. Кроме того, быстрое вращение способствовало бы созданию однородной продолговатости их формы. Но их форма неоднородна.

После создания множества компьютерных моделей ученые из Парижского университета, кажется, нашли объяснение вопроса образования столь необычной формы у этих двух лун. Этим объяснением является аккреционное формирование, когда при вращении края структуры объекта сплющиваются. Во время формирования спутников Сатурна вокруг них появились аккреционные диски, состоящие из пыли колец Сатурна, которая в итоге сильнее скопилась на их экваторах и создала на спутниках выпуклые гребни.

2008 KV42

Астероид 2008 KV42 получил прозвище «Драк» в честь вампира Дракулы, обладавшего возможностью ходить по стенам. Но каким образом хождение по стенам может быть связано с астероидом? Оказывается, Драк является первым обнаруженным транснептуновым объектом, имеющим ретроградную орбиту вращения. Другими словами, он движется в противоположную сторону вращения Солнца. Орбитальный период Драка при этом составляет 306 лет.

К настоящему моменту в Солнечной системе обнаружено несколько объектов с ретроградным движением. Одним из этих объектов, например, является комета Галлея, чья орбитальная траектория очень близко расположена к Солнцу. Драк, в свою очередь, никогда не приближается к Солнцу на расстояние, равное примерно 20 расстояниям между Солнцем и Землей, что примерно эквивалентно орбите Урана. Такая особенность астероида может являться связующим звеном между такими объектами, как комета Галлея и другими объектами из облака Оорта, предположительно выступающего источником комет в нашей Солнечной системе, и, возможно, поможет ученым объяснить специфику их формирования, которая до сегодняшнего дня является загадкой для науки.

Читать полностью…

В Космосе

Telegram-канал с историями о такси, про такси и просто про нас.

https://telegram.me/joinchat/ABkWyjz1BNxe80bjofwe-g

Читать полностью…

В Космосе

http://inspaceforum.ru/ru/registration

Читать полностью…

В Космосе

4.Мы сделаны из мяса.

Просто прочтите небольшую часть короткого рассказа Терри Бисона, номинированного на несколько премий.

– Они мясные.

– Мясные?

– Да. Они сделаны из мяса.

– Из мяса?!

– Ошибка исключена. Мы подобрали несколько экземпляров с разных частей планеты, доставили на борт нашего корабля-разведчика и как следует протестировали. Они полностью из мяса.

– Но это невероятно! А как же радиосигналы? А послания к звездам?

– Для общения они используют радиоволны, но сигналы посылают не сами. Сигналы исходят от машин.

– Но кто строит эти машины? Вот с кем нужен контакт!

– Они и строят. О чем я тебе и толкую. Мясо делает машины.

– Что за чушь! Как может мясо изготовить машину? Ты хочешь, чтобы я поверил в мясо с памятью и чувствами?

– Да ничего я не хочу. Просто рассказываю, что есть. Это – единственные разумные существа в целом секторе, и при этом состоят из мяса.

– Может, они похожи на орфолеев? Ну знаешь, этот карбоновый интеллект, который в процессе развития проходит мясную фазу?

– Да нет. Они рождаются мясом и умирают мясом. Мы изучали их в ходе нескольких жизненных циклов – которые у них, кстати, совсем коротенькие. Ты, вообще, представляешь, сколько живет мясо?

– Ох, пощади меня… Ладно. Может, они все-таки не полностью мясные? Ну, помнишь, как эти… веддилеи. Мясная голова с электронно-плазменным мозгом внутри.

– Да нет же! Сперва мы тоже так подумали. Раз у них голова из мяса. Но потом, как я и сказал, каждого протестировали. Сверху донизу. Везде сплошное мясо. Что снаружи, что внутри.

– А как же мозг?

– А, мозг есть, все в порядке. Но тоже из мяса.

– Откуда же берутся мысли?!

– Не понимаешь, да? Мысли производит мозг. Мясо.

– Мысли у мяса? Ты хочешь, чтобы я поверил в разумное мясо?

– Да, черт возьми! Разумное мясо. Мясо с чувствами. С совестью. Мясо, которое видит сны. Всё – сплошное мясо. Соображаешь?

– О господи… Ты что, серьезно?

– Абсолютно. Они на полном серьезе сделаны из мяса, и последние сто своих лет пытаются выйти на связь.

– Чего же они хотят?

– Для начала – поговорить… Потом, видимо, пошарить по Вселенной, выйти на ученых других миров и воровать у них идеи с данными. Все как всегда.

– Значит, нам придется разговаривать с мясом?

– В том-то и дело. Так они и твердят в посланиях: «Алло! Есть кто живой? Кто-нибудь дома?» – и прочую дребедень.

– То есть действительно разговаривают? При помощи слов, идей и концепций?

– Еще как. Особенно с окружающим мясом…

– Но ты же сказал, что они используют радио!

– Да, но… Чем, по-твоему, они забивают эфир? Мясными звуками. Знаешь это плямканье, когда шлепают мясом по мясу? Вот так они перешлепываются друг с дружкой. И даже поют, пропуская сквозь мясо струйки сжатого воздуха.

– С ума сойти. Поющее мясо! Это уж слишком… И что ты посоветуешь?

– Официально или между нами?

– И так и эдак.

– Официально нам полагается выйти на контакт, приветствовать их и открыть доступ к Полному реестру мыслящих существ и многосущностных разумов в этом секторе – без предубеждений, опасений и поблажек с нашей стороны. Но если между нами – я стёр бы к чертовой матери все их данные и забыл о них навсегда.

– Я надеялся, что ты это скажешь.

– Мера, конечно, вынужденная. Но всему есть предел! Разве нам так уж хочется знакомиться с мясом?

– Согласен на все сто! Ну, скажем мы им: «Привет, мясо! Как дела?» А дальше что? И сколько планет они уже заселили?

– Только одну. Они могут путешествовать в специальных металлических контейнерах, но постоянно жить в пути не способны. Кроме того, будучи мясом, они могут передвигаться только в пространстве С. Это не дает им развить скорость света – а значит, вероятность выхода на контакт у них просто ничтожна. Точнее, бесконечна мала.

– Выходит, нам лучше сделать вид, что во Вселенной никого нет?

– Вот именно.

– Жестоко… С другой стороны, ты прав: кому охота встречаться с мясом? А те, кого брали на борт для тестирования, – ты уверен, что они ничего не помнят?

Читать полностью…

В Космосе

Годовая экспедиция завершилась

Сегодня ночью успешно приземлился космический корабль "Союз ТМА-18М". На борту находились американский астронавт Скотт Келли и российское космонавты Михаил Корниенко и Сергей Волков.

"Годовая" экспедиция длилась 340 суток. Суммарный налет Скотта Келли теперь составляет 543 дня в космосе, и это абсолютный рекорд для астронавтов США. У Михаила суммарный налет получается 514 суток, и догонять российского рекордсмена Геннадия Падалку (878 суток в космосе) ему еще долго.

Читать полностью…

В Космосе

Кроме свободно используемых камер, на МКС есть и перманентно зафиксированные. Например, снаружи имеется подвижная камера на манипуляторе, которая используется для внешнего осмотра станции и пристыкованных кораблей. Также этот манипулятор используется для операций за бортом МКС, а управляет им человек, находящийся внутри станции.
Фотографу-астронавту сложно добиться неподвижного положения камеры – это главная сложность космической съемки. Сам фотоаппарат, конечно, можно зафиксировать, но станция постоянно находится в движении и слегка вибрирует, поэтому длинная выдержка для съемки объектов, расположенных на Земле, исключена. Однако Дональд Петтит, имея возможность сделать камеру неподвижной относительно МКС, неоднократно делал снимки с длинной выдержкой. Правда, и здесь не обошлось без хитростей. Астронавт не мог дать выдержку в несколько минут, поэтому он делал серию фотографий с экспозицией 30 секунд, а затем объединял их в единое изображение в графическом редакторе. Его работы стали одними из самых популярных фотографий из космоса.
На Земле нетрудно сделать фотографию Млечного пути или даже отдельных созвездий, однако в космосе, где звезды видны гораздо лучше, таких фотографий никто не делал. Причина очевидна – на короткой выдержке снять звезды невозможно, а получение четкого изображения на длинной выдержке невозможно по причине быстрого движения станции. Теоретически, хороший снимок звездного неба можно было сделать с поверхности Луны, но такой задачи перед членами лунных экспедиций не стояло.
Ну и, конечно, космос просто не мог обойтись без камер GoPro. Недавно в Instagram-аккаунте производителя был опубликован портрет российского космонавта Олега Артемьева, а еще чуть позже в Сети появилось длинное видео, показывающую работу экипажа на Международной космической станции. Появление экшен-камеры на МКС может говорить только о том, что в будущем мы увидим еще больше детальных видеороликов из космоса. В отличие от зеркальной камеры, несколько GoPro можно закрепить на скафандре и документировать работу в открытом космосе одновременно с разных ракурсов.

Дилетанты в космосе

Как ни странно, съемка из космоса возможна даже при отсутствии многомиллионных бюджетов. По крайней мере, в 2012 год британец Адам Кедворт собрал простейший зонд из цифровой камеры за 30 фунтов (Canon A570), GPS-трекера и радиопередатчика и запустил его в космос с помощью воздушных шаров, наполненных гелием. За несколько часов самодельный аппарат поднялся на высоту 33 километра и сделал несколько снимков, после чего благополучно вернулся на Землю, приземлившись в 50 километрах от места запуска. Роль корпуса играла ударопрочная компактная коробка, а GPS-трекер и передатчик помогли благополучно найти устройство после приземления. Общий бюджет эксперимента составил всего 200 фунтов стерлингов.

Космос в Сети

Интерес к космосу снова растет, как это было после полета Гагарина и лунной программы США. Доставка камер RED и GoPro на Международную космическую станцию – безусловно, очень важное событие, благодаря которым у нас появился новый познавательный материал. И хотя официально об этом не сообщалось, можно не сомневаться, что полнометражный документальный фильм о работах на МКС уже не за горами. А пока можно наслаждаться бесчисленным множеством качественных снимков из космоса.
Пример видео — https://archive.org/details/EVAGoPro (прим.ред)
Всем, кто хоть немного интересуется космосом обязательно следует подписаться на аккаунт NASA в Instagram, на Роскосмос, а также на личный блог космонавта Олега Артемьева, который в данный момент работает на МКС. Кроме того, вам определенно стоит заглянуть в твиттер Дональна Петтита, фотографии которого вы видели выше, а также посмотреть на коллекцию космических снимков итальянского космонавта Паоло Несполи на flickr и почитать ЖЖ Федора Юрчихина.

Читать полностью…

В Космосе

В этот момент — примерно через одну стотысячную долю секунды после запуска механизма рождения Вселенной — кварки слились в элементарные частицы (см. Кварки и восьмеричный путь). До этого Вселенная представляла собой компактное море из кварков и лептонов; с этого момента она превратилась в остывающий океан элементарных частиц.

10(–10) секунды
Эта отметка знаменует новую серию этапных превращений — началось великое объединение фундаментальных сил (см. Универсальные теории). Именно в это мгновение произошло объединение электромагнитного и слабого взаимодействий. До этого момента во Вселенной действовало три силы; теперь их стало четыре. Энергии, присутствующие во Вселенной в этот момент, соответствуют максимальным энергиям, которые могут быть развиты в современных земных ускорителях. Поэтому всё, что было изложено мною выше, в принципе поддается экспериментальной проверке; всё дальнейшее — чистые гипотезы.

10(–35) секунды
При этих температурах объединились сильное и электрослабое взаимодействия. До этой доли мгновения во Вселенной действовало две силы, после него их стало три. В тот же миг началось скачкообразное расширение, которое называется инфляционным (см. Инфляционная стадия расширения Вселенной), продолжавшееся до отметки 10–32 cекунды. Одновременно из Вселенной исчезли античастицы.

Квантовая хромодинамика и Стандартная модель описывают поведение материи при невероятно высоких энергиях, существовавших во Вселенной через 10–35 секунды после ее зарождения. И эти теории проверены экспериментально, но при более низких энергиях. Все теории Ранней Вселенной не идут дальше этого момента.

10(–43) секунды
Теоретики предполагают, что в этот миг произошло объединение гравитации с другими силами. До этого во Вселенной действовала единая и неделимая сила. Именно механизм перехода от одной к двум фундаментальным силам взаимодействия и пытаются описать универсальные теории. Что было до этого мгновения? Об этом мы можем только догадываться. Как и составителям средневековых географических карт, нам остается только написать: «Осторожно, там чудовища!»

Читать полностью…

В Космосе

Чатвин-Дэвис и его коллеги поняли, что могут телепортировать информацию о состоянии электрона также и из черной дыры. Предположим, Алиса плавает рядом с черной дырой со своим электроном. Она захватывает один фотон из пары, рожденной в процессе излучения Хокинга. Подобно электрону, фотон может вращаться в обоих направлениях и будет запутан с партнером-фотоном, который упал в черную дыру. Затем Алиса измеряет полный момент, или спин, черной дыры — ее размер и, грубо говоря, насколько она ровно расположена по отношению к определенной оси. Имея два этих бита информации в руках, она бросает свой электрон, теряя его навсегда.

Но Алиса может восстановить информацию о состоянии этого электрона, сообщают ученые в работе на Physical Review Letters. Все, что ей нужно сделать, это еще раз измерить спин и ориентацию черной дыры. Эти измерения затем запутывают черную дыру и падающий фотон. Они также телепортируют состояние электрона на фотон, захваченный Алисой. Таким образом, информация потерянного электрона будет извлечена в наблюдаемую Вселенную.

Чатвин-Дэвис подчеркивает, что эта схема не является планом практического эксперимента. В конце концов, от Алисы потребуется мгновенное измерение спина черной дыры, масса которой равна массе солнца. «Мы шутим, что Алиса, наверное, самый продвинутый ученый во Вселенной», говорит он.

У этой схемы есть также масса ограничений. В частности, как отмечают авторы, она работает с одной квантовой частицей, но не с двумя или больше. Это потому что в рецепте используется тот факт, что черная дыра сохраняет угловой момент, поэтому ее конечный спин равен ее начальному спину плюс спину электрона. Это позволяет Алисе извлечь ровно два бита информации — общий спин и его проекция по одной оси — и этого достаточно, чтобы определить широту и долготу квантового состояния одной частицы. Но этого недостаточно, чтобы восстановить всю информацию, захваченную черной дырой.

Чтобы действительно решить информационную проблему черной дыры, теоретикам нужно учесть сложные состояния интерьера черной дыры, говорит Стефан Лейхенхауэр, теоретик Калифорнийского университета в Беркли. «К сожалению, крупнейшие вопросы на тему черных дыр касаются именно внутренней работы, — говорит он. — Таким образом, этот протокол, безусловно интересный сам по себе, вероятно, мало что расскажет нам об информационной проблеме черной дыры».

Кроме того, проникновение вглубь черных дыр потребует квантово-механической теории гравитации. Разработка такой теории является, пожалуй, самой великой целью всей теоретической физики — десятилетиями она ускользает от физиков.

Читать полностью…

В Космосе

Rosetta снова кружит на близком расстоянии от ядра кометы, и продолжает звать Philae. Причины молчания могут быть в неисправных радиопередатчиках, либо солнечные батареи покрылись пылью и больше не в состоянии обеспечивать энергией аппарат.

К концу 2015 года температурные условия в трещине, где застрял аппарат, уже не совместимы с его работоспособностью. Rosetta еще попытается спуститься до 10 км и провести съемку предполагаемого места посадки Philae. Однако надежды на чудесное воскрешение, как уже бывало, сейчас уже практически нет. Поэтому когда мы увидим Philae на снимках, нам остается сказать только: Good-night, sweet prince.

Читать полностью…

В Космосе

Выстрела не произошло.

Коснувшись поверхности Philae должен был включить ракетные двигатели, которые должны были дуть вверх и прижимать аппарат к комете.
Двигатели не сработали.

Во время работы двигателей, модуль должен был ввинтить в поверхность буры на своих ногах, чтобы надежно закрепиться на поверхности. Но без гарпунов и двигателей его ждала драматическая судьба, в которой буры были бесполезны. Несмотря на аппаратные проблемы, Philae повезло, что рыхлый грунт поглотил часть кинетической энергии, и аппарат не отбросило в космическое пространство. Но зонд отскочил, пролетел несколько сот метров и остановился только после четвертого прыжка.

Конечное место посадки сильно отличалось от того, что готовили ранее. Фактически Philae застрял в трещине глубиной несколько метров. Никто не знал места его фактической посадки. Результаты осмотра камерами, и данные выработки энергии солнечными батареями показали, что это довольно темное место. У ученых оставалось около двух-трех суток, чтобы реализовать весь научный потенциал Philae, задействовать все исследовательские приборы и инструменты, пока не исчерпается запас аккумуляторных батарей.

По словам ученых, за 64 часа работы Philae им удалось реализовать на 80% научную программу зонда. Philae сумел проверить твердость поверхности и замерить ее температуру пенетрометром MUPUS, осмотреть поверхность камерами ROLIS, «просветить» ее георадаром CONSERT. Хроматографы Ptolemy и COSAC смогли «вдохнуть» газы кометы и изучить состав ее пыли. Более того, благодаря отскоку аппарата, удалось провести изучение в двух участках поверхности.

Что же смог узнать Филя?

Как в целом ранее и предполагалось, комета представляет собой смесь льда и пыли, причем довольно рыхлой консистенции. По данным радарного просвечивания пористость составляет 75-85%. При этом, поверхность непосредственно в месте посадки, оказалось неожиданно твердой. Ударник не смог продвинуться глубже 3 см рыхлой трухи. Дальше ему путь преградил твердый лед.

Обнаруженные газы у поверхности ядра кометы показали богатый набор органических соединений: формальдегид, метилизоцианат, ацетон, пропиональдегид, ацетамид и еще 11 органических соединений, богатых на углерод и азот. Основу атмосферы составляли водяные пары, угарный и углекислый газы. Исследователи отмечают, что обнаруженные органические соединения участвуют в синтезе аминокислот, сахаров, нуклеотидов и азотистых оснований – т.е. являются готовыми «кирпичиками» жизни. Это не доказывает, что где-то кроме Земли есть жизнь, скорее подтверждает гипотезы о том, что кометы играли не последнюю роль в формировании жизни на Земле и могли принести на планету органические «заготовки», из которых, в конечном счете, появились и мы. Так, что, продолжая мысль Карла Сагана, мы состоим не только из звездного вещества, но и из кометного. Может быть оттуда такая тяга к космическим полетам?

К сожалению, радар CONSERT не успел установить происхождение двойной структуры кометы. Для полноценного исследования нутра ядра, сигналы предполагалось посылать на Rosetta, а та уже должна была курсировать с обратной стороны кометы и принимать передачу CONSERT. Из-за ограниченности рабочего времени удалось пройтись «по верхам», не углубляясь дальше 100 метров в тело кометы.

По истечении 64 часов, Philae уснул. Т.е. ушел в режим гибернации, в котором он пребывал и во время полета. Поначалу ученые давали весьма оптимистичные прогнозы по его пробуждению: сначала через неделю, потом через две, потом через два месяца. Но аппарат молчал. Комета приближалась к Солнцу, поэтому ожидалось, что батареи Philae будут получать больше энергии и это позволит подзарядить аккумуляторы и вернуться к работе. По предварительной программе, если бы посадка удалась на равнину, то к марту 2015 года палящие лучи Солнца привели бы к перегреву и выходу из строя аппарата. Но тень трещины берегла аппарат, хотя и не давала ему возможности вернуться к работе.

Читать полностью…

В Космосе

Дальнейшее изучение Млечного Пути принесло много любопытных фактов. Так, выяснилось, что он, как и другие звездные скопления, имеет ядро, из которого вытягиваются спиралевидные ветви.

Именно они для нас и видны в виде светлой полосы Млечного Пути, только, правда, видим мы все это изнутри. Но поскольку эти разветвления проецируются одно на другое, разобраться, сколько их и как они устроены, практически невозможно.

Любопытную загадку задало и сияние в нашей Галактике, увидеть которое в ней невозможно. А ведь ядра других галактических систем сияют, причем довольно ярко. В связи с этим появилось дерзкое предположение, что у нашей Галактики нет ядра.

Но и этот парадокс Млечного Пути удалось разгадать. А помогло астрономам это сделать одно наблюдение: они заметили, что в спиральных туманностях, к которым относится и Млечный Путь, отчетливо заметна темная прослойка. Оказалось, что это скопление межзвездных газа и пыли.

А поскольку наша Солнечная система находится именно в той области Галактики, в которой огромные темные облака скрывают ее центр, поэтому земной наблюдатель и не видит ядра Млечного Пути.

Эти открытия позволили ответить еще на один любопытный вопрос: какие силы заставляют Млечный Путь разделяться на два рукава? Оказалось, что ими являются те же гигантские облака пыли, которые не позволяют увидеть ядро Галактики. На самом же деле за стеной из пыли сверкают миллиарды звезд, и если бы это облако отсутствовало, жители Земли смогли бы наблюдать сияющий эллипсоид бесчисленных звезд ядра Галактики, который занимал бы на небосводе площадь, равную сотне лун.

И все же о строении спиральных ветвей Млечного Пути ученые знают мало. Особенно в сравнении с теми сведениями, которые им известны о других объектах мироздания.

На сегодняшний день известно, что наша Галактика — это гигантская звездная система дисковидной формы, включающая сотни миллиардов звезд. Все звезды, которые сияют над нами в ясную ночь, находятся в пределах нашей Галактики. И если бы мы смогли взглянуть на Млечный Путь со стороны, мы увидели бы летящий в пространстве звездный город в виде тарелки поперечником в 100 тысяч световых лет. В ее центре мы заметил бы утолщение диаметром 20 тысяч световых лет, от которого в пространство уходят исполинские спиральные ветви.

Впрочем, следует сказать, что форма нашей Галактики не совсем дисковидная. И обусловлено это тем, что она окружена облаками разреженного вещества, радиус которого примерно 150 тысяч световых лет.

В то же время именно благодаря наличию в плоскости Галактики огромного количества пыли и газа там и рождается звездная «молодь». Происходит это за счет конденсации этого вещества. Затем со временем юные звезды «раздувают» эти облака и становятся видимыми.

А.В. Волков. "Сто великих загадок астрономии"

Читать полностью…

В Космосе

Наука и Техника - 🔥❗️Самый известный журнал о Науке и Технике! 👍Подпишись✅

«Атеист» - 🔥❗️Канал для тех, кто думает своей головой 👍Подпишись✅

The Brains - 🔥❗️Канал "The Brains" - прокачай свои мозги! 👍Подпишись✅

Полезное образование - 🔥❗️Самые полезные знания собранные в одном месте! 👍Подпишись✅

Полезное образование - 🔥❗️Самые полезные знания собранные в одном месте! 👍Подпишись✅

«Зигмунд Фрейд» - 🔥❗️Фрейдизм. Зи́гмунд Фрейд австрийский психолог, психиатр и невролог. 👍Подпишись✅

Английский - 🔥❗️Здесь публикуются слова-перевод по темам. 👍Подпишись✅

Facts4U - 🔥❗️Интересные и полезные Факты Наука и Лайфхаки 👍Подпишись✅

Краткие Факты - 🔥❗️Факты всего мира 👍Подпишись✅

Skillon - 🔥❗️Школа саморазвития, лучший способ провести время с пользой! 👍Подпишись✅

#tmnvp

Читать полностью…

В Космосе

Комета Хейла- Боппа - одна из самых наблюдаемых комет за последние 100 лет!

При прохождении перигелия 1 апреля 1997 год, комета Хейла- Боппа представляла собой потрясающее зрелище: ее блеск достиг - 0,7 звездной величины, а два ее хвоста, прекрасно видимые невооруженным глазом, растянулось по небу почти на 20 градусов. Комету можно было наблюдать сразу после наступление сумерек. Некоторое время она оставалась незаходящим объектом для жителей средних широт Северного полушария. Она стала наиболее массово наблюдавшейся кометой в истории астрономии! По некоторым оценкам, ее видело более трех миллиардов человек.

Читать полностью…

В Космосе

Комета Хейла- Боппа - одна из самых наблюдаемых комет за последние 100 лет!

При прохождении перигелия 1 апреля 1997 год, комета Хейла- Боппа представляла собой потрясающее зрелище: ее блеск достиг - 0,7 звездной величины, а два ее хвоста, прекрасно видимые невооруженным глазом, растянулось по небу почти на 20 градусов. Комету можно было наблюдать сразу после наступление сумерек. Некоторое время она оставалась незаходящим объектом для жителей средних широт Северного полушария. Она стала наиболее массово наблюдавшейся кометой в истории астрономии! По некоторым оценкам, ее видело более трех миллиардов человек.

Читать полностью…

В Космосе

Будучи чуть меньше нашей собственной Луны, Тритон является единственным крупным спутником нашей Солнечной системы, который движется в обратном вращению Нептуна направлении. Кроме того, являясь одним из самых крупных спутников в нашей Солнечной системе (он больше Плутона), Тритон имеет достаточно гравитации для поддержания тонкой атмосферы. Однако давление воздуха на спутники гораздо ниже земного и составляет 1/70000 атмосферного давления на Земле.

В конце концов стоит отметить о том, что Тритон обладает одним из самых высоких альбедо (способность отражать свет), известных науке. Этот спутник отражает 60-95 процентов света, который его достигает. Для сравнения: наша Луна отражает всего 11 процентов света.

Дополнительное кольцо Сатурна

В этой статье не раз упоминался Сатурн — планета, известная своей необычной системой окружающих ее колец, состоящих из плоских концентрических образований изо льда и пыли. Совсем недавно, в 2009 году, наука узнала, что у Сатурна имеется одно дополнительное кольцо. Невероятно гигантское кольцо. Отклоненное на 27 градусов от основных колец, новое обнаруженное кольцо расположено на расстоянии, равном примерно 128 радиусам планеты, и занимает еще 207 потенциальных радиусов в пространстве. Оно настолько разряжено, что увидеть его можно только в инфракрасном спектре. И кольцо это может быть причиной «двуликости» одного из спутников Сатурна — Япета. Двуликим его называют потому, что одно из его полушарий черное как копоть, а второе — белое и блестящее, как только что выпавший снег.

В этом же кольце расположена орбита еще одного спутника Сатурна — Фебы, — который, в свою очередь, и может являться виновником образования этого кольца. Некоторые ученые предполагают, что выбрасываемая Фебой пыль оседает на Япет, чья орбита пролегает на грани нового обнаруженного кольца. Каждый раз, когда Япет проходит через кольцо, на его экваторе накапливаются частицы, содержащиеся в кольце. В течение сотни тысяч лет этого процесса они образовали огромные горы, получившие название Стена Япета.

Сиамские близнецы — Янус и Эпиметей

Спутники Сатурна Янус и Эпиметей нередко называют «сиамскими близнецами», потому что расстояние между их орбитами составляет всего около 50 километров — меньше, чем радиус самих спутников. В результате этого эти спутники раз в четыре года меняются местами. Эпиметей и Янус движутся по своим орбитам независимо друг от друга до тех пор, пока внутренний спутник не начинает нагонять внешний. При этом под действием гравитационных сил Эпиметей выталкивается на более высокую орбиту, а Янус переходит на более близкую к Сатурну. Эта особенность в некоторой степени запутала ученых, которые по ошибке приняли Янус за Эпиметей. В 1978 году, спустя 12 лет после первоначального открытия Януса (а возможно, и Эпиметея) ученые выяснили, что на самом деле они все это время наблюдали за двумя спутниками, а не за одним. В 1980 году это мнение было подтверждено космическим аппаратом «Вояджер». По догадкам некоторых ученых, Янус и Эпиметей ранее являлись одним целым, более крупным спутником, который впоследствии раскололся на две половины и с тех пор не раз путал исследователей.

Круитни

Давайте вернемся к околоземному космическому пространству и поговорим о втором «спутнике» нашей планеты. Предполагать наличие второй «Луны» ученые стали еще в 1846 году. Первым о ее наличии заявил Фредерик Пети, которого первоначально никто не воспринял всерьез. А позже и вовсе объявили лжеученым. По его мнению, присутствие второй луны могло объяснять множество несоответствий, с которыми сталкивались многие астрономы. Пити заявил, что время вращения второй луны составляет менее трех часов. Спустя столетие, в 1986 году, наличие этого квазиспутника, или второй луны, подтвердил британский астроном-любитель Дункан Уалдрон.

Читать полностью…

В Космосе

Все мы знаем о Плутоне. Это космическое тело стало объектом пристального внимания в последнее время, особенно после того, как в 2006 году было переклассифицировано из разряда планет в разряд карликовых планет. А вы слышали когда-нибудь о «Анти-Плутоне»? Крупный транснептуновый объект 90482 «Орк» из пояса Койпера обладает практически одинаковым с Плутоном орбитальным периодом, углом наклона и почти аналогичной между Солнцем и Плутоном дистанцей. Несмотря на то, что орбита Орка подходит довольно близко к орбите Нептуна, резонанс между двумя объектами и большой угол наклона орбиты Орка не позволяет им приблизиться друг к другу. Единственным, пожалуй, существенным отличием Орка от Плутона является разворот его орбиты. Помимо того, что орбиты Орка и Плутона очень похожи, оба космических объекта имеют свои луны, которые в обоих случая оказываются несколько крупнее предполагаемых значений, учитывая размеры самих карликовых планет. Например, спутник Плутона Харон размером почти в половину самого Плутона. Размер спутника Орка, имеющий название Вант, составляет примерно 1/3 от размера Орка.

Назван Орк в честь этрусского бога смерти и подземного царства. Поверхность Орка покрыта кристаллическими частицами льда, которые могли бы свидетельствовать о криовулканической деятельности в прошлом. Помимо этого, возможно наличие других соединений, в том числе аммиака. Если его наличие будет действительно подтверждено, то эта информация сможет помочь ученым лучше понять процесс формирования других транснептуновых объектов.

(90) Антиопа

Число 90 в названии Антиопы говорит о том, что этот астероид оказался 90-м обнаруженным по счету. Хотя этот момент по-прежнему является предметом жарких споров. Дело в том, что его орбита лежит внутри астероидного поля между Юпитером и Марсом, и, что более интересно, Антиопа представляет собой первый открытый двойной астероид. С момента его обнаружения Антиопа считался одиночным астероидом, однако в 2000-м году благодаря 10-метровому телескопу в обсерватории Кек на Гавайских островах группа астрономов обнаружила, что астероид на самом деле состоит из двух объектов размером около 86 километров и разделенных дистанцией всего в 171 километр. Астероиды со спутниками открывали и ранее, однако практически одинаковый размер и масса этих объектов позволила ученым классифицировать Антиопу как первый обнаруженный двойной астероид.

Шестиугольник Сатурна

Все мы знаем, что Сатурн обладает кольцами. Но слышали вы когда-нибудь о том, что эта планета может похвастаться необычными облаками? В начале 1980-х годов космический аппарат «Вояджер» сделал неожиданное и удивительное открытие, которое впоследствии было подтверждено космическим зондом «Кассини». Это подтверждение показало, что на северном полюсе Сатурна бушует гигантский шторм, обладающий формой гексагона (шестиугольника). Каждая из его сторон имеет правильную форму, а сам шторм размером больше, чем диаметр Земли. По мнению ученых, шторм на Сатурне продолжается уже больше 30 лет. Что еще более удивительно, его скорость вращения не соответствует скорости движения других облаков на планете.

Для того чтобы выяснить причину возникновения этого гексагонального шторма, ученые решили провести лабораторный эксперимент. Исследователи поставили на вертящийся стол 30-литровый баллон с водой. Она моделировала атмосферу Сатурна и её обычное вращение. Внутри баллона были помещены маленькие кольца, вращающиеся быстрее ёмкости. Это генерировало миниатюрные вихри и струи, которые экспериментаторы визуализировали при помощи зелёной краски. Чем быстрее вращалось кольцо, тем больше становились вихри, заставляя близлежащий поток отклоняться от круговой формы. Таким образом авторам опыта удалось получить различные фигуры — овалы, треугольники, квадраты и, конечно, искомый шестиугольник. И хотя данный эксперимент не рассказал ученым о том, как на Сатурне могут происходить подобные атмосферные течения, он показал, почему вся система получается столь красивой и, главное, столь продолжительной.

Читать полностью…

В Космосе

Орбитальная станция «Мир» (как и корабль «Буран») — вершина советского космического инженерного искусства. В феврале 2016 года ей бы исполнилось 30 лет.

Читать полностью…

В Космосе

INSPACE FORUM 2016: вся частная космонавтика России в одном месте

3-4 марта 2016 года. Москва, КВЦ «Сокольники» – мероприятие, посвященное коммерческой космонавтике и развитию бизнеса в сфере космических технологий.

Главные задачи INSPACE FORUM 2016 – подробно осветить перспективы развития космической отрасли в России и объединить усилия коммерческих и государственных предприятий в разработке и реализации инновационных решений. Форум станет уникальной площадкой для выгодного взаимодействия частных бизнес-структур, научных центров, государственного космического сектора и независимых инвесторов.
Программа INSPACE FORUM 2016 – это выступления более 30 ведущих российских и зарубежных специалистов в сфере коммерческого космоса и несколько дискуссионных панелей.

В числе спикеров:
Игорь Буренков, Директор по коммуникациям Роскосмос (http://vk.com/club30315369)
Сергей Иванов, генеральный директор Dauria Aerospace (http://vk.com/club50293523)
Михаил Болсуновский, первый заместитель генерального директора СОВЗОНД (http://vk.com/club41664725)
Валентин Уваров, директор департамента пилотируемых космических комплексов «ОРКК»
Илья Голубович, предприниматель и эксперт по альтернативным источникам энергии, основатель и управляющий партнер венчурного фонда I2BF Global Ventures».
Вадим Тепляков, основатель компании Yaliny, которая разрабатывает новую систему спутниковой связи и должна обеспечить абонентов дешевым Интернетом.

Смотреть всех спикеров:

Важная часть INSPACE FORUM 2016 – выставка, на которой будут представлены новые разработки ракетно-космической техники, спутниковых технологий, комплектующие и программное обеспечение от ведущих компаний отрасли, а также проекты молодых разработчиков.

Среди участников выставки:
Dauria Aerospace (http://vk.com/club50293523) - одна из первых в России частных космических компаний - разработчик и производитель бюджетных спутников.
Sputnix (http://vk.com/club49343931) - Российская частная компания-производитель высокотехнологичных спутниковых компонент и технологий для малых космических аппаратов, а также сервисов на их основе.
Лин Индастриал (http://vk.com/club77636571) - российский стартап, создающий сверхлегкие космические ракеты
и многие другие.
К 55-летию первого пилотируемого полета человека в космос, INSPACE FORUM дарит бесплатный вход на выставку для всех, кто интересуется космосом и новыми технологиями.

Посещение выставки бесплатно по предварительной регистрации:
http://inspaceforum.ru/ru/registration
Билеты на форум: от 8 тыс. руб.
________
Организатором форума выступает компания Smile-Expo при партнерской поддержке кластера космических технологий «Сколково», Ассоциации «ГЛОНАСС/ГНСС-Форум» и компании Спутникс | Sputnix (http://vk.com/club49343931) .

Читать полностью…
Subscribe to a channel