devsp | Unsorted

Telegram-канал devsp - Data Science | Machinelearning [ru]

17987

Статьи на тему data science, machine learning, big data, python, математика, нейронные сети, искусственный интеллект (artificial intelligence) Англоязычный канал по DS и Machinelearning -https://t.me/ds_international По сотрудничеству - @g_abashkin

Subscribe to a channel

Data Science | Machinelearning [ru]

🔎 Подборка вакансий для джунов

Младший специалист по анализу данных / Junior Data Scientist
🟢Python, R, Математическая статистика, Регрессионный анализ
🟢Уровень дохода не указан | 1–3 года

Data Analyst (Junior)
🟢SQL, Python, A/B тесты, BI, ML Base, EDA
🟢от 70 000 ₽ | Без опыта

Junior Data Specialist
🟢SQL, Excel, ETL, DWH, Power BI, Tableau, Google Data Studio
🟢от 70 000 до 90 000 ₽ | 1–3 года

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Постройте простую модель классификации с использованием scikit-learn

Создайте модель на датасете Iris, обучите классификатор KNeighborsClassifier и сделайте предсказание. Это классическая задача для первых шагов в машинном обучении.

Решение задачи🔽

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# Загружаем данные
iris = load_iris()
X, y =
iris.data, iris.target

# Делим на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Обучаем модель
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)

# Предсказание
y_pred = model.predict(X_test)

# Оценка качества
print(f"Точность: {accuracy_score(y_test, y_pred):.2f}")

Читать полностью…

Data Science | Machinelearning [ru]

🔥 Самые интересные статьи за последние дни:

Смарт-функции в Алисе: как LLM помогает понять, чего хочет пользователь

Сбер выкладывает GigaChat Lite в открытый доступ

История YOLO – самой известной архитектуры компьютерного зрения

Магия простоты: как мы улучшили отображение общественного транспорта на карте

Обучение и fine-tuning моделей простым языком: зачем, как, где

Читать полностью…

Data Science | Machinelearning [ru]

🤔 Выбираем MLOps инструменты с учётом зрелости команды

В статье разбирают, как выбрать MLOps-инструменты под уровень зрелости команды: почему решений много, но не все подходят, и как не утонуть в многообразии вариантов.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🌱 Не бойся признавать, что чего-то не знаешь

Легко притворяться экспертом и искать решение вслепую, но это затягивает процесс и создаёт ложное впечатление о твоих знаниях.

👉 Совет: если не знаешь ответа — так и скажи. Вопросы — не признак слабости, а стремления разобраться. Более того, честность повышает доверие в команде. Никто не знает всего — даже опытные разработчики иногда гуглят основы.

Читать полностью…

Data Science | Machinelearning [ru]

➡️ Как Duolingo юзает машинное обучение для прокачки английского: кратко и по делу

В статье рассказывают, как ИИ сделал Duolingo фабрикой языковых курсов: генерация контента, проверка ответов, адаптация заданий — всё на автомате. Учить стало быстрее.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🧠 Распознавание орхоно-енисейских рунических надписей методами машинного обучения

В статье рассказывают о расшифровке орхоно-енисейских рун: древние тексты на камне, трудности интерпретации и идеи автоматизации для точности и скорости анализа.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🔎 Подборка вакансий для сеньоров

Senior Data Scientist (Recommender Systems)
🟢Python, PyTorch, PySpark, ClickHouse, Jenkins, Airflow, ONNX
🟢от 5 000 до 6 500 € | 3–6 лет

Senior Data Analyst - BI Developer
🟢SQL, Power BI, Python, DataLens, Jupyter
🟢Уровень дохода не указан | 3–6 лет

Senior Data Engineer
🟢SQL, Python, GreenPlum, ClickHouse, Kafka, RabbitMQ, Docker, Kubernetes, Scala, Java
🟢Уровень дохода не указан | более 6 лет

Читать полностью…

Data Science | Machinelearning [ru]

Вебинар по техническому анализу финансовых рынков 📊

Приглашаем Data Scientist’ов, разработчиков и аналитиков данных на бесплатный вебинар 14 мая, начало в 18:00 мск.

🔍 На вебинаре вы научитесь анализировать графики и применять ключевые индикаторы для прогнозирования. Освоите типы графиков, тренды, паттерны и важнейшие технические индикаторы, такие как MA, MACD, RSI и многие другие.

Урок поможет вам повысить точность ваших торговых решений, используя надежные методы анализа.

Запишитесь на открытый урок и получите скидку на большой онлайн-курс «ML для финансового анализа»: https://vk.cc/cLJ4fQ

Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Задачка по Python

Создайте Python-приложение, которое принимает путь к CSV-файлу с историческими данными о ценах акций (дата, цена закрытия) и предсказывает, будет ли цена акций расти или падать на следующий день, используя простую линейную регрессию. Программа должна выводить прогноз в консоль и сохранять модель в файл model.pkl.

➡️ Пример:

python app.py predict_stock prices.csv — предсказывает изменение цены акций на следующий день.

Решение задачи ⬇️

import sys
import pandas as pd
from sklearn.linear_model import LinearRegression
import pickle

def predict_stock(file):
data = pd.read_csv(file)
X = data.index.values.reshape(-1, 1)
y = data['Close'].values

model = LinearRegression()
model.fit(X, y)

next_day = [[len(X)]]
prediction = model.predict(next_day)

with open('model.pkl', 'wb') as f:
pickle.dump(model, f)

print(f'Прогноз на следующий день: {"Рост" if prediction > y[-1] else "Падение"}')

if __name__ == "__main__":
if len(sys.argv) != 3 or sys.argv[1] != 'predict_stock':
print('Использование: python
app.py predict_stock <файл.csv>')
else:
predict_stock(sys.argv[2])

Читать полностью…

Data Science | Machinelearning [ru]

🔎 Подборка вакансий для мидлов

Middle Data Analyst
🟢SQL, Python, Power BI, Tableau, FineBI
🟢Уровень дохода не указан | 1–3 года

Аналитик данных / Data Analyst
🟢SQL, Python, Apache Airflow, Clickhouse, Jupyter, Git, DataLens
🟢от 150 000 до 300 000 ₽ | 3–6 лет

Data Scientist (Ranking&Search)
🟢Python, PySpark, Hive, SQL, PyTorch, CatBoost, Airflow, Docker, Hadoop
🟢Уровень дохода не указан | 3–6 лет

Читать полностью…

Data Science | Machinelearning [ru]

Как обработать пропущенные данные?

Пропущенные данные — частая проблема в Data Science, особенно в реальных данных. Чтобы правильно обработать такие данные, можно использовать стратегии заполнения пропусков (например, средним значением или медианой) или удалить строки/столбцы с пропусками.

➡️ Пример:

import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4], 'B': [5, np.nan, 7, 8]}
df = pd.DataFrame(data)

# Заполнение пропусков средним значением
df['A'].fillna(df['A'].mean(), inplace=True)

print(df)


🗣️ Пропущенные данные могут искажать результаты анализа, поэтому их нужно обрабатывать перед моделированием.

Читать полностью…

Data Science | Machinelearning [ru]

➡️ Что такое технология TTS, как устроена и каких сферах используется синтез речи

Вместе с Григорием Стерлингом, лидом команды TTS в SberDevices, разбираемся, как устроена технология, как разрабатывают синтезаторы речи и что нужно знать, чтобы работать в этой сфере.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Линейная регрессия и её регуляризация в Scikit-learn

Линейная регрессия — это метод обучения с учителем, который предсказывает значение y на основе признаков X. Основное допущение — линейная зависимость y от Xi, что позволяет оценить y через математическое выражение.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🔥 Самые интересные статьи за последние дни:

Не бойтесь потоков в Python, они не кусаются

Рубрика: VPS на пределе возможностей. LLM на CPU с 12Gb RAM

Предвзятость русскоязычных LLM: кого машина считает «обычным человеком»?

Семантический веб: краткий обзор технологий и инструментов

Инструмент обеспечения качества данных: от теории к практике

Читать полностью…

Data Science | Machinelearning [ru]

⚡️Создаём свою нейросеть в PyTorch

Хотите быстро разобраться в PyTorch и написать свою нейросеть? Мы подготовили для вас вебинар, где на практике разберём все этапы создания ML-модели.

Вебинар проведет Владислав Агафонов — ML-инженер, ранее работал в Yandex и Huawei.

Что будет на вебинаре?
🟠Установим PyTorch в Google Colab и настроим работу на бесплатном GPU;
🟠Поймём, что такое тензоры и почему они — фундамент всех нейросетей;
🟠Скачаем готовый датасет, разберём его структуру и подготовим для обучения;
🟠Научимся использовать DataLoader для эффективной загрузки данных;
🟠Пошагово соберём облегчённую версию классической свёрточной нейронной сети (CNN);
🟠Обучим и протестируем модель.

🕗 Встречаемся 14 мая в 18:30 по МСК, будет много практики, ответы на вопросы и полезные инсайты от эксперта.

😶Зарегистрироваться на бесплатный вебинар

Читать полностью…

Data Science | Machinelearning [ru]

🧠 Языковые модели против мошенников: как LLM помогают бороться с отмыванием денег и финансовым мошенничеством

В статье разбирают, как LLM помогает банкам бороться с мошенничеством: от отслеживания подозрительных транзакций до анализа фишинговых схем — умная защита в действии.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Напишите функцию для расчёта Accuracy вручную

В машинном обучении Accuracy — это метрика качества классификации. Показывает, сколько предсказаний модель сделала правильно.

Решение задачи🔽

def accuracy_score(y_true, y_pred):
correct = 0
for true, pred in zip(y_true, y_pred):
if true == pred:
correct += 1
return correct / len(y_true)

# Пример использования:
y_true = [1, 0, 1, 1, 0, 1]
y_pred = [1, 0, 0, 1, 0, 1]

print(accuracy_score(y_true, y_pred)) # 0.833...

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Предсказание цены дома по площади

Построить сверточную нейронную сеть (CNN) для классификации изображений из набора данных CIFAR-10.

Модель должна предсказывать класс объекта на изображении. Датасет CIFAR-10 содержит 60,000 изображений размером 32x32 пикселя, разделенных на 10 классов:

— Самолет, Автомобиль, Птица, Кот, Олень, Собака, Лягушка, Лошадь, Корабль, Грузовик.

Требования к модели:

• Использовать сверточные слои для выделения признаков.
• Применить слои подвыборки (пулинг) для уменьшения размеров карты признаков.
• Добавить полносвязные слои для классификации на основе выделенных признаков.
• Использовать функцию активации ReLU для скрытых слоев и softmax для выходного слоя.
• Оценить точность модели на тестовых данных.

Входные данные: изображения размера 32x32 с тремя каналами (RGB).

Решение задачи🔽

import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# Загрузка данных
(X_train, y_train), (X_test, y_test) = cifar10.load_data()

# Нормализация данных
X_train, X_test = X_train / 255.0, X_test / 255.0

# Создание модели CNN
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dense(10, activation='softmax')
])

# Компиляция модели
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# Обучение модели
model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test))

# Оценка модели
loss, accuracy = model.evaluate(X_test, y_test)
print(f"Точность модели: {accuracy:.2f}")

Читать полностью…

Data Science | Machinelearning [ru]

🧠 Создаем свой RAG: введение в LangGraph

В статье объясняют, что такое RAG и как использовать LangGraph для генерации с дополненной выборкой: основы, примеры и подготовка к созданию собственных RAG-систем.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

Как работает метод feature_importances_ в Python и зачем он нужен в Machine Learning?

Метод feature_importances_ — это атрибут некоторых моделей машинного обучения в библиотеке scikit-learn, который позволяет определить, какие признаки (фичи) наиболее влияют на предсказания модели.

Этот метод возвращает значение важности для каждого признака, показывая, как сильно он влияет на конечный результат. Его использование особенно полезно для деревьев решений и ансамблевых моделей, таких как RandomForest и GradientBoosting.

➡️ В примере ниже мы используем RandomForest для анализа важности признаков и визуализации результатов.

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
import pandas as pd

# Загрузка данных
data = load_iris()
X, y = data.data, data.target

# Создание и обучение модели
model = RandomForestClassifier()
model.fit(X, y)

# Получение и визуализация важности признаков
feature_importances = pd.Series(model.feature_importances_, index=data.feature_names)
feature_importances.sort_values(ascending=False).plot(kind='bar')


🗣 Использование feature_importances_ помогает определить, какие признаки стоит использовать, исключить малозначимые фичи и сделать модель более интерпретируемой.


🖥 Подробнее тут

Читать полностью…

Data Science | Machinelearning [ru]

📈 Подборка статей для вашей карьеры

«Снова упала?» Как поднять самооценку и зачем мы сравниваем себя с другими, даже если от этого больно

Из учителя в QA: мой путь в IT

Рынок дата-инженеров и прогноз на 2025

Как сделать резюме, которое дойдёт до работодателя. Фильтры ATS в 2025 году

Ошибайся смело: жизненные уроки из мира machine learning

Читать полностью…

Data Science | Machinelearning [ru]

🚀 Правда или нет, что Google победил Cursor?

В статье сравнивают два AI-инструмента для разработки: Firebase Studio от Google и Cursor от Anysphere. Кто круче — облачная платформа или интегрированный редактор?

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

➡️ Самые интересные статьи за последние дни:

Эксперимент: даём ChatGPT полный доступ к компьютеру

Правильный путь создания python-библиотеки: от создания до публикации

Запускаем Yolo на пятирублёвой монете или Luckfox Pico Mini

Более мощное семейство моделей YandexGPT 4: рост качества ответов, длинный контекст, пошаговые рассуждения

Как мы обучили Mistral 7B русскому языку и адаптировали для объявлений Авито

Читать полностью…

Data Science | Machinelearning [ru]

☁️ Как обучить ИИ в облаке

Сегодня мы хотим поделиться с вами нашим успешным кейсом, который наглядно демонстрирует, как облачные технологии могут значительно улучшить и ускорить процессы разработки и обучения ИИ.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🧑🏻‍💻Как улучшить точность рекомендаций в своих проектах?

На открытом вебинаре 12 мая в 20:00 МСК вы узнаете, как работает обучение ранжированию, что такое функции потерь и как они влияют на качество рекомендаций. Понимание этих функций — ключ к эффективному предсказанию предпочтений пользователей.

Освойте практику на реальных данных с использованием модели BPRMF и получите ценные знания, которые помогут улучшить ваши результаты.

⚡️Присоединяйтесь к открытому уроку и получите скидку на программу обучения «Рекомендательные системы»: https://otus.pw/BECI8/

Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, erid: 2VtzqxFS5mV

Читать полностью…

Data Science | Machinelearning [ru]

📨 Пример использования программы для парсинга e-mail адресов с сайтов, созданный ИИ

Сегодня делимся программой для парсинга e-mail с сайтов, созданной за 30 минут с помощью ИИ от Rokitok. Это показывает, как ИИ ускоряет задачи, на которые раньше уходили дни или большие бюджеты.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Задачка по Python

Создайте Python-приложение, которое принимает набор данных с несколькими признаками и определяет наиболее важные признаки для предсказания целевой переменной с помощью модели RandomForest. Программа должна выводить результаты в виде списка признаков, отсортированных по важности.

➡️ Пример:

python app.py data.csv — выводит важные признаки.

Решение задачи ⬇️

import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

def feature_importance(file):
data = pd.read_csv(file)
X = data.drop(columns=['target'])
y = data['target']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = RandomForestClassifier()
model.fit(X_train, y_train)

importance = pd.Series(model.feature_importances_, index=X.columns).sort_values(ascending=False)
print("Важные признаки:\n", importance)

if __name__ == "__main__":
import sys
if len(sys.argv) != 2:
print("Использование: python
app.py <файл.csv>")
else:
feature_importance(sys.argv[1])

Читать полностью…

Data Science | Machinelearning [ru]

True Tech Day 2025 — фестиваль технологий для ИТ-специалистов

6 июня в Москве соберутся эксперты из ведущих ИТ-компаний, чтобы обсудить кейсы внедрения ИИ в бигтехах и будущее разработки.

В программе:

— 40+ спикеров и 4 трека докладов об AI&ML, науке, архитектуре, облачных технологиях и бэкенд-разработке;
— большой разговор о трансформации профессий и ИИ-революции;
— взгляд на ИИ со стороны науки и бизнеса: тренды 2025 года;
— опыт применения ИИ от зарубежных ИТ-экспертов;
— нетворкинг и мастер-классы.

Участвуй очно или онлайн, обменивайся опытом и знакомься с ведущими специалистами со всей страны.

Ждем тебя и коллег 6 июня в МТС Live Холл.
Участие бесплатное, но офлайн-места ограничены. Регистрируйтесь по ссылке: https://truetechday.ru/

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Предсказание цены дома по площади

Напишите модель линейной регрессии, которая будет предсказывать цену дома на основе его площади в квадратных метрах.

Сгенерируйте искусственные данные, обучите модель и сделайте предсказание для нового значения.

Решение задачи🔽

import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

# Генерация данных
np.random.seed(0)
area = np.random.randint(30, 150, size=100).reshape(-1, 1) # площадь от 30 до 150 м²
price = area * 1000 + np.random.normal(0, 10000, size=area.shape) # цена с шумом

# Обучение модели
model = LinearRegression()
model.fit(area, price)

# Предсказание
new_area = np.array([[100]])
predicted_price = model.predict(new_area)
print(f"Ожидаемая цена дома 100 м²: {predicted_price[0][0]:,.0f}₽")

# Визуализация
plt.scatter(area, price, label='Данные')
plt.plot(area, model.predict(area), color='red', label='Линейная модель')
plt.xlabel('Площадь (м²)')
plt.ylabel('Цена (₽)')
plt.legend()
plt.show()

Читать полностью…
Subscribe to a channel