devsp | Unsorted

Telegram-канал devsp - Data Science | Machinelearning [ru]

17988

Статьи на тему data science, machine learning, big data, python, математика, нейронные сети, искусственный интеллект (artificial intelligence) Англоязычный канал по DS и Machinelearning -https://t.me/ds_international По сотрудничеству - @g_abashkin

Subscribe to a channel

Data Science | Machinelearning [ru]

🔧 ТОП-10 опенсорсных инструментов для работы с ИИ в 2025 году

Детальный разбор 10 самых перспективных инструментов для работы с ИИ в 2025 году. От создания умных ассистентов до построения мощных RAG-систем — разбираем возможности, сравниваем производительность, безопасность и простоту интеграции каждого решения.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

👨‍💻Хранилища данных. Обзор технологий и подходов к проектированию

В этой статье будут рассмотрены основные подходы к проектированию архитектуры хранилищ данных (DWH), эволюция архитектур, взаимосвязь Data Lake, Data Factory, Data Lakehouse, Data Mesh c DWH, преимущества и недостатки подходов к моделированию данных.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Генератор случайных паролей с настройками

Напишите функцию, которая генерирует случайный пароль заданной длины. Пароль должен быть сформирован на основе пользовательских требований:

Использовать ли цифры.
Использовать ли буквы верхнего и/или нижнего регистра.
Использовать ли специальные символы.

➡️ Пример:

password = generate_password(length=12, use_digits=True, use_uppercase=True, use_lowercase=True, use_specials=False)
print(password)
# Пример вывода: A1b2C3d4E5f6


Решение задачи🔽

import random
import string

def generate_password(length, use_digits=True, use_uppercase=True, use_lowercase=True, use_specials=True):
if length < 1:
raise ValueError("Длина пароля должна быть больше 0")

# Формируем набор символов
character_pool = ""
if use_digits:
character_pool += string.digits
if use_uppercase:
character_pool += string.ascii_uppercase
if use_lowercase:
character_pool += string.ascii_lowercase
if use_specials:
character_pool += "!@#$%^&*()-_=+[]{}|;:,.<>?/"

if not character_pool:
raise ValueError("Нужно выбрать хотя бы один тип символов")

# Генерация пароля
return ''.join(random.choice(character_pool) for _ in range(length))

# Пример использования
password = generate_password(length=12, use_digits=True, use_uppercase=True, use_lowercase=True, use_specials=True)
print(password)

Читать полностью…

Data Science | Machinelearning [ru]

➡️ Будущее LLM в XS, S, M и других размерах

В статье обсуждаются подходы к обучению ИИ оптимально использовать свои ресурсы: от минимальной мощности для простых задач до максимума для сложных. Разбираем концепции «я не знаю» и запросов помощи.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🤔 Будущее LLM: 7 прогнозов на 2025 год

Что нового ждёт языковые модели в 2025 году? Обсудим прогнозы: расширение возможностей ИИ, их внедрение в бизнес и жизнь. Узнайте, чего ожидать и почему Джарвис пока останется мечтой.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

⚙️ Что такое @staticmethod и @classmethod в Python, и чем они отличаются?

Декораторы @staticmethod и @classmethod используются для создания методов, которые не требуют экземпляра класса. @staticmethod — это метод, который не зависит от экземпляра или самого класса, а @classmethod получает доступ к самому классу через первый параметр cls.

➡️ Пример:

class MyClass:
@staticmethod
def static_method():
return "Это статический метод"

@classmethod
def class_method(cls):
return f"Это метод класса {cls.__name__}"

# Использование
print(MyClass.static_method()) # Это статический метод
print(MyClass.class_method()) # Это метод класса MyClass


🗣️ В этом примере static_method ничего не знает о классе, в то время как class_method может взаимодействовать с классом, к которому он принадлежит. Используйте их в зависимости от того, нужно ли вам взаимодействие с классом.


🖥 Подробнее тут

Читать полностью…

Data Science | Machinelearning [ru]

📈 Подборка статей для вашей карьеры

В какой момент профессия программиста свернула не туда?

Офис Intel в Израиле отменил бесплатный кофе

Войти в IT – в 37 и с дипломом филфака

Путь к мастерству: Как стать успешным разработчиком

Галера от HH или джуны по-дешевке

Читать полностью…

Data Science | Machinelearning [ru]

E-CUP возвращается. Реальные данные. Масштабные проекты. Большие призы

Решайте ML-задачи в стиле Ozon Tech. Девять победителей разделят призовой фонд соревнования — 7 200 000 рублей 🔥
Тест-драйв работы в e-com бигтехе стартует здесь.

🗓 Регистрация: https://cnrlink.com/ecup25dsml
💻 Формат участия: онлайн
👥 Команда: от 1 до 5 человек
🎯 Для кого: Data Scientists, ML-специалисты, аналитики данных, дата-инженеры, специалисты Big Data и разработчики, которые интересуются ML/DS.

Что вас ждёт:
🔹 Работа над проектом для миллионов пользователей на основе данных от ведущего e-com в России.
🔹 Обмен опытом с экспертами Ozon Tech.
🔹 Эксклюзивный мерч для победителей и подарки для самых активных участников.
🔹 Питчинг — 13 сентября на конференции E-CODE. Ozon Tech предоставит финалистам билеты и оплатит поездку.

Три трека E-CUP:
1️⃣ Рекомендации: предсказание следующей покупки пользователя
2️⃣ Логистика: автопланирование курьеров
3️⃣ Контроль качества: автоматическое выявление поддельных товаров

Регистрация на платформе Codenrock: https://cnrlink.com/ecup25dsml

Читать полностью…

Data Science | Machinelearning [ru]

➡️ Multichannel Keyword Spotting for Noisy Conditions.

Исследователи Яндекса рассказали о технологии, которая распознает голосовые команды даже на фоне сильного шума. Ключевая идея — attention-механизм, который обрабатывает сразу два входных сигнала: один — после шумоподавления, второй — после эхоподавления. Технология уже работает в устройствах Яндекса, а теперь доступна и разработчикам по всему миру. Исследование приняли на Interspeech 2025 — ведущую конференцию по речевым технологиям.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

⚙️ Пишем сервис инференса ML-модели на go, на примере BERT-а

Статья объясняет, как внедрить ML-модель, обученную на Python, в сервис на Go, используя ONNX. Рассматривается пример работы с моделью seara/rubert-tiny2-russian-sentiment для анализа сентимента текста.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🤖 Как мы сделали клиентскую поддержку интернет-магазина действительно умной: опыт внедрения RAG-бота

Статья описывает разработку «умного» помощника для клиентской поддержки интернет-магазина. Рассматриваются проблемы, с которыми сталкивался клиент, и пути их решения с помощью ИИ.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

Машинное обучение для начинающих: Введение в нейронные сети

Этот пост предназначен для абсолютных новичков и предполагает НУЛЕВЫЕ предварительные знания машинного обучения. Мы разберемся, как работают нейронные сети, и реализуем одну из них с нуля на Python.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Удаление выбросов из набора данных

Напишите функцию, которая принимает pandas.DataFrame и название столбца, а затем возвращает новый DataFrame, в котором выбросы (значения, выходящие за пределы 1.5 межквартильного размаха) удалены.

Пример:

import pandas as pd

data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
# Ожидаемый результат:
# values
# 0 10
# 1 12
# 2 15
# 4 14
# 5 13
# 6 11
# 8 16


Решение задачи🔽

import pandas as pd

def remove_outliers(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]

# Пример использования:
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)

Читать полностью…

Data Science | Machinelearning [ru]

🚀 Анализ текстов задерживает скорость разработки?

Разбираемся, как классический трансформер BERT справляется с миллионами документов за доли секунды!

На открытом уроке «Решаем задачи текстовой классификации с помощью BERT» мы расскажем:
🔹 Внутреннее устройство BERT
🔹 Методы дообучения и интеграции в реальные проекты
🔹 Практические примеры от эксперта OTUS

📅 Когда: 30 июля, 18:00 МСК
🎟 Регистрация бесплатная — зарегистрируйтесь сейчас и получите скидку на программу обучения «NLP / Natural Language Processing»: https://vk.cc/cO4sa6

Не пропустите шанс повысить свою экспертизу в области NLP!

Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Поиск числа с максимальной суммой цифр

Напишите функцию, которая принимает список положительных чисел и возвращает число с наибольшей суммой цифр. Если таких чисел несколько, вернуть первое из них.

Пример:

numbers = [123, 456, 789, 234]
result = max_digit_sum(numbers)
print(result)
# Ожидаемый результат: 789 (7+8+9=24, это максимальная сумма)


Решение задачи🔽

def max_digit_sum(numbers):
def digit_sum(n):
return sum(int(digit) for digit in str(n))

return max(numbers, key=digit_sum)

# Пример использования:
numbers = [123, 456, 789, 234]
result = max_digit_sum(numbers)
print(result) # Ожидаемый результат: 789

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Задачка по Python

Напишите функцию, которая принимает список email-адресов и возвращает уникальные домены из этого списка. Домен — это часть адреса после символа @.

➡️ Пример:

["user1@example.com", "user2@test.com", "user3@example.com", "user4@sample.com"]

#{"example.com", "test.com", "sample.com"}


Решение задачи ⬇️

def get_unique_domains(emails):
domains = {email.split('@')[1] for email in emails}
return domains

# Пример использования:
emails = ["
user1@example.com", "user2@test.com", "user3@example.com", "user4@sample.com"]
result = get_unique_domains(emails)
print(result) # Ожидаемый результат: {'
example.com', 'test.com', 'sample.com'}

Читать полностью…

Data Science | Machinelearning [ru]

🔥 Самые интересные статьи за последние дни:

KAN: Kolmogorov–Arnold Networks

Стандартное отклонение для полных чайников

Почему галлюцинируют нейросети [и что с этим делают]

Понимает ли Vision Llama импрессионистов?

Что ищет он в краю далёком? Как найти смысл жизни с PostgreSQL

Читать полностью…

Data Science | Machinelearning [ru]

💎Кратко про Ensemble методы с примерами

В этой статье мы рассмотрим три основных подхода: Bagging, Boosting и Stacking, и посмотрим, как их реализовать на Python.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

⚡️ Ошибки должны быть громкими

Тихие ошибки — это как протечка трубы: они долго не видны, пока не станет плохо.

👉 Совет: логируй и сигнализируй о любых неожиданных ситуациях. Лучше пусть код упадёт с понятным сообщением в деве, чем тихо сломает данные в проде.

Читать полностью…

Data Science | Machinelearning [ru]

✔️ Системы ценностей больших языковых моделей

Разбираю, как LLM умудряются обзавестись политикой, любимыми расами и списками «жертв». От первых восторгов до шока прошло меньше двух лет — теперь копаем, что внутри.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

⚙️ Как устроена Лаборатория Инноваций СИБУРа и зачем она нужна

Как применять ИИ и цифровизацию в гигантской промышленной компании с десятками заводов? Узнайте, как СИБУР реализует более 30 успешных кейсов и работает с сотнями гипотез в Лаборатории ИИ.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

➡️ Добро пожаловать в CAMELoT

В статье рассказывается о новой архитектуре CAMELoT, которая помогает большим языковым моделям обрабатывать длинные последовательности, не требуя повторного обучения. Она использует ассоциативную память для улучшения производительности.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🔥 Самые интересные статьи за последние дни:

Что читали на Хабре в 2024 году: анализ статей с Node.js, Google Sheets и каплей ChatGPT

Поднимаем в облаке расшифровку речи в текст с помощью нейросетей. VPS на пределе возможностей

Стоит ли ChatGPT о1 Pro своих денег? Небольшой тест-драйв модели

Возможности LLM и RAG на примере реализации бота для поддержки клиентов

Гетерогенные вычисления: проектирование и разработка вычислительной системы для нейросетей

Читать полностью…

Data Science | Machinelearning [ru]

👩‍💻 Удаление выбросов из набора данных

Напишите функцию, которая принимает pandas.DataFrame и название столбца, а затем возвращает новый DataFrame, в котором выбросы (значения, выходящие за пределы 1.5 межквартильного размаха) удалены.

Пример:

import pandas as pd

data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
# Ожидаемый результат:
# values
# 0 10
# 1 12
# 2 15
# 4 14
# 5 13
# 6 11
# 8 16


Решение задачи🔽

import pandas as pd

def remove_outliers(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]

# Пример использования:
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)

Читать полностью…

Data Science | Machinelearning [ru]

Компьютерное зрение, студкемп, Нижний Новгород

Яндекс Образование совместно с Неймарком и ФКН ВШЭ подготовили программу теории и практики ввода компьютерного зрения в робототехнику и автономные системы. Лекции и личное общение с экспертами, командные проекты и практические задания.

После студкемпа получите возможность начать карьеру в computer science и практические навыки работы.

Чтобы участвовать, нужно зарегистрироваться по ссылке до 14 августа. На студкемп может попасть любой студент, из любой точки РФ, но есть отбор. Победителям организаторы оплатят и дорогу, и проживание.

Читать полностью…

Data Science | Machinelearning [ru]

⚙️ Что такое модуль shutil в Python и зачем он используется?

Модуль shutil предоставляет функции для работы с файлами и директориями, такие как копирование, перемещение и удаление. Он полезен для автоматизации задач управления файлами.

➡️ Пример:

import shutil

# Копирование файла
shutil.copy('source.txt', 'destination.txt')

# Перемещение файла
shutil.move('destination.txt', 'folder/destination.txt')


🗣️ В этом примере shutil.copy копирует файл, а shutil.move перемещает его в другую директорию. Это облегчает выполнение операций с файлами и папками.


🖥 Подробнее тут

Читать полностью…

Data Science | Machinelearning [ru]

➡️ DeepSeek AI: От инъекции промпта до захвата аккаунта

Статья рассказывает о новой AI-модели DeepSeek-R1-Lite, созданной для логических рассуждений. Рассматриваются её возможности, тестирование и перспективы применения в задачах анализа и вычислений.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

➡️ Машинное обучение: Линейная регрессия. Теория и реализация. С нуля. На чистом Python

В этой статье я рассказываю про линейную регрессию, свойства, которыми должны обладать данные для модели, процесс обучения, регуляризацию, метрики качества. Кроме чистой теории я показываю как это все реализовать. Я рассказываю все в своем стиле и понимании - с инженерной точки зрения, с точки зрения того, как реализовывать с нуля.

Читать...

Читать полностью…

Data Science | Machinelearning [ru]

🔥 Самые интересные статьи за последние дни:

Не бойтесь потоков в Python, они не кусаются

Рубрика: VPS на пределе возможностей. LLM на CPU с 12Gb RAM

Предвзятость русскоязычных LLM: кого машина считает «обычным человеком»?

Семантический веб: краткий обзор технологий и инструментов

Инструмент обеспечения качества данных: от теории к практике

Читать полностью…

Data Science | Machinelearning [ru]

⚙️ Physics-based и data-driven моделирование

Статья объясняет различия между физически обоснованными моделями и моделями, основанными на данных, с примерами задач машинного обучения. Рассматривается подход к обработке данных, выбору моделей и их обучению.

Читать...

Читать полностью…
Subscribe to a channel