Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml
✔️ SciArena: платформа для тестирования ИИ на научных задачах.
Ученые из Yale, NYU и Allen Institute запустили SciArena - платформу для сравнения ИИ-моделей по качеству ответов на научные вопросы. Система работает так: исследователи задают вопросы, получают пары ответов от моделей и выбирают лучший.
Среди лидеров: OpenAI o3, обогнавший Claude и Gemini, а из открытых моделей Deepseek-R1-0528 вне конкуренции, она превзошла закрытые аналоги. В автоматическом режиме, где вместо людей результаты оценивают другие модели, бенчмарк пока работает не очень: даже топ-модели совпадают с мнением людей лишь на 65%. Код и наборы данных бенчмарка опубликованы в отрытом доступе.
allenai.org
✔️ X запускает ИИ-заметки для фактчекинга.
Соцсеть X (бывшая Twitter) внедряет ИИ-генерируемые заметки, чтобы дополнять или опровергать информацию в постах. Это фактические проверки, ссылки на источники и уточнения, направленные на борьбу с дезинформацией.
Позже система заметок откроется для сторонних разработчиков: их алгоритмы смогут писать заметки, сначала тестируясь на пробных постах, а затем публиковаться. Окончательное решение о публикации будет принимать человек: заметку одобрят, если она покажется полезной пользователям с разными точками зрения. При этом ИИ-модель можно использовать любую, ограничений нет.
bloomberg.com
✔️ Baidu обновил поисковик, дополнив его ИИ-инструментами.
Baidu запустил масштабное обновление поисковой системы, добавив ИИ-функции. Теперь пользователи могут вводить тексты до 1000 слов, загружать фото, голосовые сообщения и даже видео для поиска. В интерфейс интегрированы генераторы текста и изображений, а бизнесу предложили инструмент для создания видео. Это первый серьезный ребрендинг за 10 лет, так компания пытается вернуть утраченные позиции.
Причина - спад выручки от онлайн-рекламы из-за конкуренции с TikTok (Douyin) и новыми ИИ-браузерами. Google и компания Цукерберга забирают львиную долю рекламных бюджетов, поэтому Baidu не может игнорировать перемены. Новые функции должны удержать аудиторию и привлечь рекламодателей, сделав поиск умнее и удобнее.
techinasia.com
✔️ Perplexity Max: новый тариф подписки за 200 долларов в месяц.
Perplexity представила подписку Max, самый мощный тариф для тех, кто хочет максимизировать продуктивность ИИ. Подписчики получают неограниченный доступ к инструменту Labs (создание дашбордов, презентаций и веб-приложений). Подписчики тарифа также получат ранний доступ к браузереру Comet, приоритетную поддержку и топовые модели ИИ, OpenAI o3-pro и Claude Opus 4. Max уже доступен на iOS и вебе, а вскоре появится и корпоративная версия подписки.
perplexity.ai
✔️ Amazon внедряет ИИ-систему DeepFleet для своих складов.
Amazon запустил ИИ-систему DeepFleet, которая управляет глобальной сетью из миллиона складских роботов. Вместо фиксированных маршрутов ИИ анализирует данные о прошлых перемещениях и генерирует оптимальные пути в реальном времени, как «умная» система управления городским трафиком. Это должно сократить время перемещений на 10%, ускорить доставку заказов и снизить общее энергопотребление.
Система постоянно обучается на новых данных и работает в 300 центрах по всему миру, адаптируясь к изменениям на складах: роботы Hercules поднимают тяжелые грузы, а Proteus автономно перемещается по помещениям.
wsj.com
@ai_machinelearning_big_data
#news #ai #ml
Искусственный интеллект выходит в классифайды
AIRI — институт, который ведет и поддерживает фундаментальные и прикладные исследованиями в области искусственного интеллекта. Его ученые разработали защиту от дипфейков или систему для ускорение фармакологических расчетов.
Ежегодно организация поддерживает лучших студентов и молодых ученых со всей страны, собирает ведущих экспертов по искусственному интеллекту и проводит углубленный курс по прикладным дисциплинам в рамках Летней школы по ИИ.
В этом году участников Летней школы принимает Томский государственный университет. Она получила поддержку Авито — 80 участников из разных регионов России будут разбирать различные задачи, в том числе бизнес-кейс от крупнейшего классифайда. Авито рассмотрит внедрение лучшего решения на свою платформу.
Ранее компания уже говорила об обновленной стратегии, до 2028 года они планируют инвестировать до 12 млрд рублей во внедрение и развитие GenAI в свои продукты, а также подготовить до 3000 специалистов в области искусственного интеллекта.
Помимо кейсов и публичных лекций, компания предложит карьерные консультации для молодых специалистов и поможет упаковать свой опыт в востребованный на рынке формат, чем также поможет развитию базы кадров в области.
📌 State of Foundation Models 2025 — краткое изложение отчёта Innovation Endeavors
Венчурный фонд Innovation Endeavors, основанный бывшим CEO Google Эриком Шмидтом, выпустил 126-страничный обзор о состоянии и тенденциях фундаментальных ИИ-моделей в 2025 году.
🟢 2025 — год, когда генеративный ИИ стал по-настоящему массовым.
Каждый восьмой работник на планете использует ИИ-инструменты хотя бы раз в месяц, а 90 % прироста аудитории произошло за последние полгода. Многие «ИИ-приложения» уже приносят индустрии миллиарды долларов в год, охватывая инженерию, дизайн, бухгалтерию, юриспруденцию и другие сферы.
🟠LLM уже обходят людей на сложных тестах.
Современные языковые модели превосходят врачей по целому ряду диагностических задач и решают олимпиадную геометрию лучше, чем 99 % людей.
Самое неожиданное: если дать небольшой модели время подумать, то она может обойти гораздо более крупную – эксперименты показали, что 3B-модель с reasoning-механизмом обойдет 70B-модель.
🌟 Reinforcement Learning Teachers: как модели на 7B параметров обучают гигантов.
Reinforcement Learning Teachers (RLT) от Sakana AI - метод обучения LLM рассуждениям, где компактная модель-"учитель" не решает задачи сама, а учится объяснять уже готовые решения так, чтобы студент-модель лучше их усваивала.
Вместо дорогого обучения "с нуля" через проб и ошибку (как в классическом RL), учитель фокусируется на ясности пошаговых пояснений, используя и вопрос, и правильный ответ как подсказку. Это радикально удешевляет процесс и выравнивает цель учителя быть полезным студенту.
Архитектура строится вокруг петли обратной связи. Учителю (например, крошечной модели на 7B параметров) на вход подаются и задача и ее верное решение. Его работа - сгенерировать максимально понятное пошаговое объяснение, как прийти от условия к ответу.
Эффективность учителя измеряется не тем, решил ли он задачу сам (он даже не обязан это уметь), а тем, насколько хорошо студент-модель понимает его объяснение. Ключевая метрика - "логарифмические вероятности": чем выше вероятность, что студент, прочитав объяснение учителя, правильно предскажет следующий шаг или итоговый ответ, тем лучше работа учителя. Это и есть сигнал подкрепления для обучения RLT.
Вся магия метода состоит в этом смещении фокуса RL. Вместо чтоб награждать модель за самостоятельное нахождение ответа (что требует огромных вычислительных ресурсов и приводит к "узкой" специализации), RLT поощряют за педагогическую эффективность.
Благодаря наличию готового ответа во время обучения, в роли учителя могут выступать даже небольшие, дешевые модели, которые не смогли бы решить сложные задачи в одиночку. Объяснения от RLT затем используются как высококачественные данные для обучения (дистилляции или "холодного старта") студент-моделей любого размера.
Главный нюанс: метод требует наличия готовых правильных решений для задач в обучающем наборе. Он не заменяет полностью сбор данных, а перепрофилирует их для обучения "преподаванию".
Пока метод тестировался в основном на задачах математики и естественных наук. Но его сила в эффективности: 7B RLT-учитель превосходит в обучении студентов-гигантов ( 671B DeepSeek R1). Он обучает даже студентов крупнее себя (32B) быстрее (менее суток против месяцев) и лучше, а его объяснения четче, без лишнего "шума" вроде юмора или подсказок калькулятора, свойственных традиционным RL-моделям.
▶️ Проект RLT открытый, в репозитории на Github опубликован код для воспроизведения экспериментов из техотчета, а на HF - тестовые модели учителей на 7 и 32 млрд. параметров, обученные на базе Qwen2.5 с помощью сета Bespoke-Stratos-17k.
📌Лицензирование: Apache 2.0 License.
🟡Статья
🟡Набор моделей
🟡Arxiv
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #LLM #RL #RLT #SakanaAI
Интелион Облако запускает розыгрыш 🎉
Главный приз – 3 сервера с А10 или А5000. Также разыгрываются приятные скидки.
Запусти нейросеть, рендер, LLM или сложные вычисления на топовом GPU за 1 рубль!
Как принять участие:
1. Зарегистрироваться на Intelion.cloud
2. Заполнить форму розыгрыша
3. Подписаться на ТГ канал
Итоги подведем 5 июля в прямом эфире в канале Artificial Intelion.
Не забудь поделиться с другом!
📌MesaNet: оптимальная адаптация весов в реальном времени.
MesaNet — это новое поколение RNN-архитектур от команды Google Paradigms of Intelligence, созданное для эффективного моделирования длинных последовательностей (например, текста или временных рядов).
Ключевая задача MesaNet - преодолеть главный недостаток трансформеров: линейный рост вычислительных затрат и потребления памяти при увеличении длины последовательности во время инференса. В отличие от классических подходов, MesaNet достигает постоянной сложности на токен за счёт «оптимального обучения в реальном времени» — динамической подстройки внутренних весов под контекст прямо во время работы модели, без хранения всей истории токенов.
Архитектурно, MesaNet построен как стек чередующихся блоков: Mesa-слои (для смешивания информации вдоль последовательности) и MLP (для обработки признаков внутри токена).
Mesa-слой - это сердце системы. Вместо стандартного обновления весов через градиентный спуск (как в Mamba или DeltaNet), он решает оптимизационную задачу для каждого нового токена: ищет матрицу весов, минимизирующую квадратичную ошибку предсказания на всей текущей последовательности.
Для этого используется метод сопряженных градиентов (Conjugate Gradient, CG), который эффективно решает линейную систему из накопленной ковариация ключей, регуляризатора и оптимизированного запроса. Состояние слоя хранится в двух матрицах, которые обновляются через «забывающие» и «входные» гейты, зависящие от данных.
Еще одна, не менее важная опция — динамическое распределение вычислений. Число шагов сопряженного градиента не фиксировано: сложные последовательности требуют больше итераций для сходимости. Это позволяет гибко балансировать точность и скорость.
Сравнение с трансформерами (MHA) и современными RNN (Mamba2, xLSTM, DeltaNet) на синтетике (MAD, RegBench) и языке (SlimPajama) показало: MesaNet сопоставим с трансформерами по perplexity, но выигрывает у других RNN на задачах, требующих длинного контекста. При этом он сохраняет преимущество RNN — постоянные память/вычисления на токен при инференсе.
Интересный паттерн выявили во время тестов: MesaNet, да и просто RNN, точнее предсказывают ранние токены последовательности, а трансформеры - поздние. На длинной экстраполяции (до 32k токенов) MesaNet обошла Mamba2 и xLSTM, но уступила трансформеру.
🔜 Посмотреть видео с докладом про работу.
@ai_machinelearning_big_data
#AI #ML #RNN #MesaNet
📌 Microsoft прокачивает логику ИИ: как маленькие модели учатся рассуждать.
Microsoft Research представила методы, усиливающие способность языковых моделей, от компактных до гигантских к сложным рассуждениям. Технологии фокусируются на 3 направлениях: архитектура малых моделей, математическая строгость и кросс-доменное обобщение.
Ключ для маленьких моделей (1.5–7 млрд параметров) в имитации человеческого пошагового мышления.
rStar-Math использует алгоритм MCTS в цикле самообучения: сначала декомпозиция задачи на шаги, затем Process Preference Model (PPM), который учит модель оценивать качество каждого шага через "метки награды", и наконец — итеративная доработка. За 4 цикла MCTS, стратегия и PPM совместно улучшают результат.
Logic-RL — это фреймворк обучения с подкреплением, который награждает модель только при идеально оформленном ходе рассуждений и верном ответе, исключая любые попытки выбора обходных путей.
Для математической надежности разработан LIPS, гибрид ИИ и символьных движков. LIPS распределяет задачи: языковая модель распознает паттерны и переформулирует условия (например, неравенства), а символьный решатель выполняет точные преобразования (масштабирование, упрощение).
Чтобы ИИ понимал условия без ошибок, создан нейро-символический фреймворк генерации данных: символьные системы создают задачи, а языковые модели переводят их в "человеческий" текст. Для проверки выводов используются символьная эквивалентность (сравнение формул) и семантическая согласованность (анализ смысла через эмбеддинги), повышая точность на 35%.
Дополнительный бонус — неожиданное обобщение. Тренировка на математике резко улучшила результаты моделей в программировании и естественных науках.
Для унификации подходов создан Chain-of-Reasoning (CoR), позволяющий гибко комбинировать текстовые, программные и символьные рассуждения в одном решении. А Critical Plan Step Learning (CPL) учит ИИ стратегическому планированию: разбивать проблему, выделять ключевые шаги и отбрасывать слабые варианты через комбинацию Plan-based MCTS и Step-APO.
🔜 Читать статью в Microsoft Research Blog
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Reasoning #Microsoft
🖥 OpenAI выпустили подкаст с Сэмом Альтманом о будущем ИИ
В первом эпизоде Сэм Альтман и Эндрю Мэйн говорят о том, что ждет нас дальше:
от GPT‑5 и AGI до суперкомпьютера Project Stargate и ИИ, помогающего воспитывать детей.
Приятного просмотра
▪ YouTube: https://www.youtube.com/watch?app=desktop&v=DB9mjd-65gw
▪ Spotify
https://open.spotify.com/show/0zojMEDizKMh3aTxnGLENP
▪ Apple:
https://podcasts.apple.com/us/podcast/openai-podcast/id1820330260
▪X: https://x.com/OpenAI/status/1935357512011890815
@ai_machinelearning_big_data
#OpenAI #chatgpt #AI #podcast
👨💻 На GitHub выкатили опенсорс-песочницу для тестирования ИИ-алгоритмов рекламных ставок
Команда искусственного интеллекта Авито представила BAT (Benchmark for Auto-bidding Task) — первый российский опенсорс-инструмент для тестирования алгоритмов ставок в рекламных аукционах. Презентация состоялась на международной конференции The ACM Web Conference 2025, одном из главных международных событий в области машинного обучения.
Технические особенности платформы:
🟢 Реалистичная симуляция условий рекламных аукционов
🟢 Работает на анонимизированных данных, объем которых в 1000 раз превышает использовавшийся ранее датасет iPinYou (2013)
🟢 Включает 5 базовых алгоритмов от Авито для сравнения
🟢 Позволяет тестировать custom-алгоритмы перед внедрением в продакшн
Преимущества для ML-специалистов:
🟢 Доступ к реалистичной тестовой среде с параметрами современных рекламных систем
🟢 Возможность сравнивать эффективность разных подходов к автоматическим ставкам
🟢 Инструмент для тестирования алгоритмов без необходимости развертывания сложной инфраструктуры
BAT заполняет важный пробел в инструментарии для ML-сообщества, предлагая современную альтернативу устаревшему датасету iPinYou. Проект может задать новые стандарты в диджитал-рекламе.
🖥 GitHub
✔️ Google DeepMind запустила Weather Lab с ИИ для прогнозирования циклонов.
Weather Lab - это сервис, где Google DeepMind тестирует экспериментальные модели ИИ для прогноза тропических циклонов. Инструмент генерирует 50 сценариев развития стихии за 15 дней, используя стохастические нейросети.
Традиционные физические модели часто жертвуют точностью интенсивности ради прогноза траектории, но ИИ-система DeepMind совмещает оба параметра. В тестах ее предсказания на 5 дней в среднем ближе к реальным координатам циклона на 140 км по сравнению с ведущими глобальными решениями. Также модель превосходит региональные физические аналоги в оценке силы урагана и радиуса ветров.
deepmind.google
✔️ Новый метод ICM позволяет ИИ обучаться без человеческого контроля.
Исследователи из Anthropic, Университетов Нью-Йорка и Джорджа Вашингтона разработали метод Internal Coherence Maximization (ICM), который учит языковые модели работать с задачами, опираясь на собственную логику. Модель сама проверяет, насколько ответы согласуются между собой (взаимная предсказуемость) и нет ли противоречий (логическая непротиворечивость).
На тестах (TruthfulQA, GSM8K, Alpaca) ICM показал результаты, сравнимые с обучением на человеческих оценках, а в задачах на «субъективные» критерии даже превзошел их. Например, модель без специальной тренировки определила пол автора текста с точностью 80% — выше, чем у людей. Даже при обучении чат-бота Claude 3.5 Haiku через ICM система выигрывала в 60% случаев против версии с человеческим контролем.
Однако метод не всесилен: он работает только с теми понятиями, которые модель уже «знает», и терпит неудачу с длинными текстами или задачами, требующими новых знаний.
alignment-science-blog.pages.dev
✔️ NVIDIA и Stability AI оптимизировали Stable Diffusion 3.5 с помощью TensorRT.
Совместная работа NVIDIA и Stability AI позволила ускорить генерацию в Stable Diffusion 3.5 и сократить использование видеопамяти. Модель Large, ранее требовавшая 18 ГБ VRAM, теперь работает с 11 ГБ благодаря FP8-квантованию, что делает ее доступной для большего числа GPU. На RTX 40-й серии и Blackwell-чипах FP8 и FP4 показали двукратный прирост производительности по сравнению с PyTorch.
TensorRT оптимизировал граф модели и веса под Tensor Cores, ускорив SD3.5 Large на 2,3x и Medium — на 1,7x. Разработчики также получили облегченный SDK (в 8 раз меньше) с JIT-компиляцией, позволяющий строить движки «на лету» через Windows ML. Оптимизированные версии уже доступны на Hugging Face, а в июле появится NIM-микросервис для упрощения интеграции в приложения.
blogs.nvidia.com
✔️ Google добавила новые функции Gemini AI для Workspace.
Google расширила возможности Gemini AI в Workspace, добавив функции для анализа PDF и Google-форм. Система автоматически создает краткие сводки при открытии PDF, предлагая действия «составить предложение» или «сгенерировать вопросы ». Эти подсказки появляются в боковой панели и работают на 20+ языках с 12 июня.
Для Google-форм ИИ теперь подводит итоги ответов на открытые вопросы, выделяя ключевые темы. Эта опция активируется при трех и более ответах и станет доступна с 26 июня, но пока только на английском. Еще одна новинка, которую видят пользователи с 7 июля — «помоги создать форму», позволяющая генерировать шаблоны на основе описаний и прикреплённых файлов (Docs, Sheets и т.д.).
workspaceupdates.googleblog.com
✔️ Китайские инженеры учат ИИ за границей, обходя санкции США.
Четверо китайских инженеров прилетели в Малайзию с чемоданами, набитыми жесткими дисками: 80 терабайт данных для обучения ИИ. В местном дата-центре их компания арендовала 300 серверов с чипами Nvidia, запрещенными к экспорту в Китай. Подобные схемы — ответ на давление США, ограничивающее поставки технологий.
Физическая доставка данных вместо медленной передачи через интернет, создание подставных компаний в Малайзии и переадресация оборудования через третьи страны — так китайские фирмы обходят контроль. Но санкции сжимаются: Nvidia усиливает проверки, а страны ЮВА ужесточают правила.
wsj.com
@ai_machinelearning_big_data
#news #ai #ml
🌟 NVIDIA cuOpt: GPU-решатель для оптимизации решений.
NVIDIA опубликовала в открытом доступе свой проект cuOpt. Это набор инструментов оптимизации, который использует ресурсы и возможности GPU для решения сложных задач линейного программирования, маршрутизации и логистики.
cuOpt помогает находить эффективные решения для проблем с миллионами переменных, где традиционные методы терпят крах., превращая «нерешаемые» задачи в реальные решения, без жертвования масштабом или скоростью. Это, своего рода, «турбокомпрессоре» для задач, где время и точность критически важны, от доставки товаров до расписаний производства.
cuOpt состоит из C++-движка и API (Python, C и другие), которые работают как обертки, которые дают возможность гибко интегрировать библиотеку в разные проекты.
Для задач маршрутизаций (TSP, VRP, PDP) cuOpt генерирует начальные решения, а затем улучшает их итеративно, используя эвристические алгоритмы. Это не «лобовое» вычисление всех вариантов, а умный поиск, который экономит ресурсы и время.
Методы работы с линейным программированием (LP) и смешанными целочисленными задачами (MILP) тоже уникальны. Для LP применяется PDLP — алгоритм первого порядка, который использует градиентный спуск и работает на GPU, альтернативно запускаясь на CPU с симплекс-методом.
Смешанное целочисленное программирование - это метод математической оптимизации, позволяющий решать задачи с использованием смеси непрерывных переменных (которые могут иметь любое значение, включая десятичные и дробные), дискретных переменных и двоичных переменных.
🎥 Веса и инференс для SeedVR2 — многообещающей модели для восстановления видео.
🛠️ Что это?
SeedVR2 — одношаговая диффузионная модель для восстановления видео, которая проходит пост-тренировку в противоборстве с реальными данными.
Она показывает отличные результаты даже на высоком разрешении.
🔍 Зачем нужна SeedVR2?
Обычные модели плохо справляются с AIGC и реальными видео — особенно в мелких деталях вроде текста и лиц.
Даже продвинутые диффузионные методы, использующие ControlNet или адаптеры, работают только на фиксированном разрешении (512, 1024) и требуют нарезки видео на перекрывающиеся патчи. Это:
• сильно замедляет работу
• усложняет обработку длинных и больших видео
🚀 Что нового в SeedVR2:
• Восстановление на любом разрешении без заранее обученного диффузионного приоритета
• Архитектура с крупным диффузионным трансформером, обученным с нуля
▪Github: https://github.com/ByteDance-Seed/SeedVR
x
▪ Веса: https://huggingface.co/ByteDance-Seed/SeedVR-Models
@ai_machinelearning_big_data
#news #ai #ml #ByteDance #video
📌Небенчмарковый анализ математических рассуждений o3-mini.
Epoch AI провели исследование, чтобы копнуть способность o3-mini в математическом ризонинге глубже, чем это происходит в популярных тестах и бенчмарках.
Они дали 14 математикам разобрать, как именно o3-mini-high решает сложные задачи из FrontierMath. Цель - понять ее сильные и слабые стороны в реальном математическом мышлении, а не просто фиксировать правильные ответы.
Так как внутренняя структура самой модели OpenAI не раскрывает, авторы сосредоточились на анализе ее рассуждений.
По 29-и "траекториям рассуждений" стало видно: модель не просто перебирает формулы, она действует как "индуктивный решатель на ощущениях" (по выражению одного математика).
Модель проявляет любопытство: пробует разные подходы, ставит "бюджетные эксперименты", чтобы прощупать задачу. Иногда даже пишет код для расчетов, избегая излишней абстракции.
Но стиль ее рассуждений часто неформальный, "черновой". Рассуждения излагаются приблизительно, без строгой формулировки, с пропусками сложных моментов – совсем не как это принято в математической среде.
Почему так? Возможно, строгие доказательства просто реже встречались в ее обучающих данных.
Главные проблемы модели – это обратная сторона ее же достоинств. Да, она эрудирована как никто (знает кучу теорем из разных областей – в 66% случаев она адресно применяла нужные знания, даже если подход был замаскирован).
Но ей не хватает строгости и глубины. Она часто "читерит": делает верную догадку интуитивно и тут же применяет ее для решения, даже не пытаясь ее подтвердить доказательствами.
Порой ей не хватает буквально одного шага до верного ответа. Но главное – математики критикуют ее за слабую креативность. Как заметил один эксперт, модель похожа на аспиранта, который может блеснуть начитанностью, назвать кучу теорем и авторов, но не способен глубоко переосмыслить материал или придумать что-то новое.
Набор идей модели ограничен, и если они не срабатывают – прогресса нет. Плюс ко всему, в 75% рассуждений нашли галлюцинации: модель путает термины, формулы, и зачастую выдумывает несуществующие URL для поиска недостающей информации.
Модель, по заверением OpenAI, обучали на огромном массиве данных математической литературы. Это объясняет ее феноменальную эрудицию. Но смогут ли такие модели, как o3-mini-high, преодолеть свои слабости в будущем?
Или же системы, обученные на синтетических данных (AlphaProof), пойдут другим путем, предлагая в инфернесе рассуждения, мало похожие на человеческое математическое мышление?
А пока что вывод: o3-mini-high – это мощный, но своеобразный инструмент. Знаток с интуицией, но без дисциплины профессора.
🔜 Читать статью полностью
@ai_machinelearning_big_data
#AI #ML #EpochAI
⚡️ Отчет OpenAI по пресечению вредоносного использования ИИ
В свежем июньском отчете, Open AI описала самые крупные кейсы, когда злоумышленники использовали модели ИИ для создания фейковых резюме, манипуляций в соцсетях, кибератак и мошенничества.
Для анализа угроз исследователи применяют комбинацию ИИ и экспертные команды. ИИ помогает выявлять шаблоны текста злоумышленников и координировать расследование с платформами. Архитектура таких систем включает модели для анализа данных, детекторы аномалий и инструменты для синхронизации с правоохранительными органами.
Обучались такие специализированные модели, помимо общедоступных данных, еще на примерах социальной инженерии и профилях киберугроз. Дополнительно, они получили методы обнаружения фейковых профилей, перевода текстов и анализа сетевого трафика.
▶️Всего в отчете приведено 10 случаев обнаружения:
Deceptive Employment Scheme: IT Workers.
🟠Угроза использования ИИ для создания поддельных резюме и получения удалённых IT-вакансий, связанная с подозрением на участников из КНДР.
🟢Были заблокированы аккаунты ChatGPT, использовавшие модели для автоматической генерации документов, а также установлены связи с операторами в Африке и Северной Америке.
Covert IO: Operation “Sneer Review”
🟠Координированная генерация комментариев в соцсетях для продвижения китайских интересов, включая критику Тайваня и Пакистана.
🟢Обнаружены и заблокированы аккаунты, создававшие иллюзию органической активности через множественные языки и платформы.
Covert IO: Operation “High Five”
🟠Массовые комментарии в соцсетях на политические темы в Филиппинах, связанные с маркетинговой компанией Comm&Sense Inc.
🟢Были заблокированы аккаунты, создававшие фейковые TikTok-каналы для популяризации президента Маркоса, и выявлена схема с использованием подставных профилей.
Social engineering meets IO: Operation “VAGue Focus”
🟠Социальная инженерия через поддельные СМИ (Focus Lens News, VAG Group) для сбора информации о политике США и Европы.
🟢Заблокированы аккаунты, использовавшие ИИ для перевода и создания фейковых материалов, а также выявлены признаки связи с китайскими структурами.
Covert IO: Operation “Helgoland Bite”
🟠Пропаганда партии AfD в Германии через поддельные Telegram-каналы и сайт Pravda DE.
🟢Обнаружены и заблокированы аккаунты, распространявшие контент, а также установлены связи с сетью Portal Kombat, известной по предыдущим расследованиям.
Cyber Operation: “ScopeCreep”
🟠Вредоносное ПО, распространяемое через поддельный игровой инструмент Crosshair-X, с функциями шпионажа и обхода антивирусов.
🟢Были заблокированы аккаунты, использовавшие ИИ для отладки кода, а также удалены вредоносные репозитории и установлены методы обнаружения.
Cyber Operations: Vixen and Keyhole Panda
🟠Кибератаки и сбор информации о технологиях США через ИИ, связанные с группами APT5 и APT15.
🟢Заблокированы аккаунты, использовавшие модели для создания скриптов и анализа инфраструктуры, а также переданы индикаторы партнерам для усиления защиты.
Covert IO: Operation “Uncle Spam”
🟠Поляризующий контент в США через фейковые профили с ИИ-генерируемыми изображениями и анализом данных.
🟢Заблокированы аккаунты, использовавшие ИИ для создания логотипов и сбора информации из соцсетей, также проведена оцененка степени влияния.
Recidivist Influence Activity: STORM-2035
🟠Пропаганда в поддержку Ирана и других стран через фейковые аккаунты в X, касающаяся миграции и независимости регионов.
🟢Были заблокированы аккаунты, распространявшие контент на испанском и английском, а также отмечены повторные попытки операторов вернуться к активности.
Scam: Operation “Wrong Number”
🟠Мошенничество с предложениями высокой зарплаты за лайки и инвестиции, связанное с Камбоджей.
🟢Заблокированы аккаунты, использовавшие ИИ для перевода сообщений, а также выявлена схема с этапами «The ping», «The zing» и «The sting» для обмана жертв.
🔜 Почитать полный отчет можно на сейте OpenAI
@ai_machinelearning_big_data
#news #ai #ml
✔️ Mistral запустил инструмент для "вайб-кодинга" Mistral Code.
Mistral представил Mistral Code — инструмент для программистов, который будет бороться за внимание пользователей с GitHub Copilot и другими аналогами. Продукт основан на открытом проекте Continue и включает в себя собственные модели Mistral: Codestral для автозаполнения кода, Devstral для решения задач через агенты, Mistral Medium для чатов и Codestral Embed для поиска. Поддерживаются 80+ языков программирования, интеграция с VS Code и JetBrains уже в бета-тестировании.
В компании говорят, что ассистент уже используют Capgemini, SNCF и банк Abanca. Mistral Code позволяет работать локально, обрабатывает файлы, ошибки в терминале и даже обсуждения из тикетов. Beta-версия доступна для тестирования, а часть улучшений обещают добавлять в опенсорс.
mistral.ai
✔️ Phonely, Maitai и Groq решили проблему задержек голосовом ИИ.
Компании совместно добились успеха, сократив задержку на 70% и повысив комплексную точность (ASR+генерация ответа) с 81,5% до 99,2%. Проблема «неловких пауз» в разговорах с роботами, которая выдавала их, устранена благодаря технологии Groq - «горячей замене» легких моделей LoRA без потерь в скорости.
Система работает так: Maitai выбирает оптимальную модель для каждого запроса, Groq обрабатывает ее на специализированных чипах LPU, а данные о слабых местах моделей собираются и используются для их доработки. В итоге время первого ответа снизилось с 661 до 176 мс, а синтез диалога стал в 4 раза быстрее.
Один из клиентов Phonely уже заменит 350 операторов колл-центра на ИИ, а количество качественных лидов выросло на 32%.
venturebeat.com
✔️ Aria Gen 2: подробности об умных очках с ИИ-обработкой.
Компания Марка Цукерберга раскрыла подробности об очках Aria Gen 2. Новинка весит 74–76 грамм, имеет 8 вариантов оправ и складные дужки для удобства. Главное изменение: 4 камеры с датчиками затвора, которые устойчивы к искажения при движении. Динамический диапазон вырос до 120 дБ, а угол перекрытия стереокамер увеличился до 80°, что улучшает определение глубины. В наносном узле разместили контактный вибромикрофон и датчик пульса PPG.
Для ИИ-задач предусмотрен отдельный процессор, а система VIO отслеживает движение в 6DoF. Очки следят за глазами, фиксируют зрачки, отслеживают руки в 3D. Устройства планируют выдавать исследователям позже в 2025 году, а демо покажет на конференции CVPR в июне этого года.
mashable.com
✔️ Anthropic создала специальные модели Claude Gov для нужд национальной безопасности США.
Anthropic разработала версии моделей Claude, предназначенных исключительно для правительственных структур, занимающихся вопросами национальной безопасности. Решение создано на основе обратной связи от госзаказчиков и прошло проверки на безопасность.
Модели оптимизированы для работы с секретными данными, лучше понимают документы из сферы разведки и обороны, анализируют киберугрозы и поддерживают редкие языки, важные для спецопераций. Использование ограничено закрытыми системами, где доступ к информации строго регламентирован.
anthropic.com
✔️ Higgsfield анонсировал инструмент для реалистичных видео с ИИ-аватарами.
Higgsfield представил Higgsfield Speak — платформу, которая превращает текст в видео с анимированными персонажами, передающими эмоции, жесты и движения. В отличие от обычного липсинка, новый инструмент использует 80 параметров движения и 40 визуальных эффектов, чтобы сделать анимацию похожей на «живую» съемку. Платформа подходит для подкастов, обучающих роликов или рекламных кампаний: пользователи выбирают стиль, аватар и сценарий — остальное система обрабатывает автоматически.
Продукт позиционируется как решение для креативщиков, которым нужно быстро создавать контент без камеры - от влогов до рекламных лендингов. Подписки Pro и Ultimate открывают доступ к инструментам, которые, по словам разработчиков, изменят подход к производству видео в ближайшее полугодие.
HiggsField AI в сети Х (ex-Twitter)
@ai_machinelearning_big_data
#news #ai #ml
Появилась новость: за первый месяц работы платформы hh и Минцифры выдано уже 15 тысяч сертификатов. Это добровольный инструмент для оценки IT-навыков: Java, Python, SQL и ещё 14 направлений. После прохождения теста можно получить сертификат и добавить его в резюме — он будет виден рекрутеру.
И вот, буквально на следующий день в чатах пошли обсуждения в духе “как обойти систему”. Кто-то предлагает проходить тест рядом с другом, кто-то — гуглить со второго экрана, кто-то — сажать рядом “знатока”. И ты такой читаешь всё это и думаешь: а зачем?
Это же не экзамен. Не собеседование. Сделано как тест, который ты можешь пройти сам — и по его результату понять: “я вот это знаю, а вот тут пробел”.
📌 Если результат слабый — никто его не увидит. Через месяц можно попробовать ещё раз.
📌 Если прошёл — в профиле появится значок. Да, почти как ачивка в Steam, только это видят работодатели. Особенно это может помочь, если ты джун и пока сложно выделиться среди других резюме.
Качество тестов, кстати, удивило. Ожидал очередную формальность от HR-отдела, а там вполне вменяемая методология.
Контент валидируют инженеры и люди из крупных IT-компаний, пересматривают регулярно.
Внутри представлен пул заданий, вариативность, темы довольно точечные — Python, SQL, Java, и так далее. Сейчас вроде 17 направлений, планируют 21.
Многие знакомые кодеры проходят, чтобы потестить свои скиллы. Без цели “выиграть” или “продать себя”. Просто посмотреть, где я сейчас и что стоит подтянуть.
Кто-нибудь еще проходил? Какие впечатления?
✔️Qwen VLo — новый мультимодальный ИИ от Alibaba, который заточен на понимание и генерацию изображений
📌Как работает:
Модель поэтапно строит изображение слева направо и сверху вниз, уточняя детали на каждом шаге. Это делает итоговую картинку качественной, естественной и согласованной.
Например, можно написать запрос:
«Сделай картинку милого кота» — и она появится.
А можно загрузить фото кота и попросить: «Добавь коту шапку» — и модель отредактирует изображение.
🎯 Что умеет Qwen VLo:
• Точная генерация: не путает объекты, сохраняет структуру, меняет, например, цвет машины на фото без искажений
• Редактирование по команде: «Сделай фото в стиле Ван Гога» или «добавь солнечное небо» — всё выполняется по инструкции
• Глубокое понимание: может обрабатывать сложные задачи — выделение объектов, сегментация, редактирование текста и фона
• Мультиязычность: понимает запросы на английском, китайском и других языках — просто опишите, что нужно
🧪 Сейчас Qwen VLo доступна в виде превью через Qwen Chat.
👉 Попробовать: https://chat.qwen.ai
👉 Детали: https://qwenlm.github.io/blog/qwen-vlo/
@ai_machinelearning_big_data
#Qwen #Alibaba #ai #genai #ml
Cloud․ru представил новые AI-инструменты
Cloud․ru сегодня зарелизили две свежие разработки:
AI-помощника для автоматизации работы пользователей в облаке — Клаудию. Помощник на основе GenAI доступен в режиме Public Preview. Клаудии можно будет передать часть DevOps-рутины, чтобы освободить время для стратегических и архитектурных задач.
Клаудия поможет пользователям управлять облачными ресурсами и инфраструктурой, самостоятельно выполняя конкретные действия. AI-помощник упростит подбор облачных сервисов под задачи пользователя, развернет виртуальные машины, поможет работать с консолью в режиме Co-pilot, а также настроить опции мониторинга и алертинга.
Основные сценарии применения AI-помощника:
- создание базовой инфраструктуры в облаке;
- подбор персонализированных рекомендаций по решениям, которые лучше всего соответствуют бизнес-задачам пользователей;
- подсказки команд для работы в серийной консоли виртуальных машин в режиме Co-pilot и другое.
Cloud․ru Evolution AI Factory. Облачная среда с готовыми AI- и ML-инструментами. С ее помощью бизнес и разработчики смогут ускорить процесс дообучения и развёртывания ML-моделей для различных задач, разрабатывать AI-агентов и запускать мультиагентные системы. Простой интерфейс позволяет реализовать идеи даже без навыков программирования, так что Cloud․ru Evolution AI Factory рассчитана не только на опытных разработчиков, но и на тех, у кого нет специальных знаний в ML.
В составе ИИ-фабрики:
- Evolution Foundation Models. Сервис с популярными AI-моделями доступными по API;
- Evolution ML Inference. Инструмент для развертывания ML-моделей: GigaChat и других open source моделей из библиотеки Hugging Face;
- Evolution Managed RAG. Готовый сервис для Retrieval Augmented Generation;
- Evolution ML Finetuning. Сервис для быстрой адаптации LLM-моделей;
- Evolution Notebooks. Среда визуализации данных и работы с кодом Jupyter Notebooks как сервисами ;
Evolution AI Agents. Визуальный редактор агентов на базе LLM.
В Cloud․ru отмечают, что платформа доступна не только опытным разработчикам, но и тем, кто не обладает специальными знаниями в области ML.
✔️ LAION и Intel создали инструмент для анализа 40 эмоций по мимике и голосу.
Совместный проект «Empathic Insight» - это набор моделей и датасетов для распознавания эмоций. Система оценивает интенсивность 40 эмоций на изображениях или аудиозаписях, используя шкалу от 0 до 7 для лиц и градации «отсутствие/слабо/сильно» для голоса. В основе - модели EmoNet, которые оперируют вероятностями и построенные на расширенной эмоциональной таксономии.
Для обучения использовали 203 тыс. синтетических лиц и 4,7 тыс. аудиозаписей, включая данные из датасета Laion’s Got Talent (5 тыс. часов речи на нескольких языках). EmoNet обешел Gemini 2.5 Pro и Hume AI в точности соответствия оценкам психологов.
Попутно разработана BUD-E Whisper - файнтюн Whisper, добавляющая анализ эмоций, возраста и пола в транскрибацию. Модели доступны на Hugging Face под лицензиями CC и Apache 2.0.
laion.ai
✔️ Deezer объявил о маркировке треков, созданных ИИ.
Музыкальная платформа начала предупреждать пользователей об альбомах с песнями, полностью сгенерированными ИИ. Это часть усилий против мошенников, которые используют ИИ для накрутки прослушиваний и получения необоснованных роялти. По данным компании, 18% ежедневно загружаемых треков (около 20 тысяч в день) создаются с помощью генераторов музыки.
Платформа признает, что полностью ИИ-музыка составляет лишь 0.5% трафика, но рост показателя указывает на системную уязвимость. В условиях споров вокруг обучения ИИ на чужих данных и отсутствия четкого регулирования, инициатива Deezer может стать прецедентом для отрасли.
apnews.com
✔️ Foxconn и NVIDIA внедряют гуманоидов в производство.
Компании договорились использовать гуманоидных роботов на новом заводе в Хьюстоне, где будут выпускать серверы GB300 для ИИ. Это станет первым случаем применения человекоподобных роботов в производстве продукции NVIDIA. Работа начнётся в первом квартале 2025 года, а роботы займутся сборкой, вставкой кабелей и перемещением компонентов.
Завод выбран не случайно: свободное пространство позволяет адаптировать линии под новых «работников». Пока неизвестно, какие именно гуманоиды будут задействованы — собственные разработки Foxconn с NVIDIA или китайские модели от UBTech.
reuters.com
✔️ Surglasses анонсировала первый в мире анатомический стол с интегрированным ИИ.
Asclepius AI Table - первый в мире анатомический стол с искусственным интеллектом, который меняет подход к обучению в медицине и ветеринарии. Устройство работает без дополнительного ПО, объединяя 8 модулей для изучения анатомии, патологии и биомеханики.
Встроенные ИИ-инструкторы отвечают на голосовые и текстовые запросы в реальном времени, объясняя структуры тела и адаптируя уроки под уровень ученика. Студенты могут исследовать 3D-модели тела, реконструировать КТ-снимки или анализировать гистологические слайды. Для ветеринаров доступна библиотека анатомий разных видов животных.
Отдельно выделен модуль кинезиологии с анимациями движений суставов и мышц, а также симулятор УЗИ с клиническими данными. Устройство уже заинтересовало вузы и клиники по всему миру.
prnewswire.com
✔️ Helm.ai представил камерную систему для автономного вождения автомобилей.
Honda и стартап Helm.ai анонсировали систему Helm.ai Vision, решение для автономного вождения, основанное исключительно на камерах. Технология будет внедрена в электромобили Honda 2026 года, позволяя водителям не держать руки на руле и глаза на дороге.
В отличие от компаний, использующих лидар, Helm.ai делает ставку на «компьютерное зрение»: камеры строят карту окружения в реальном времени, создавая вид сверху для улучшения навигации. Система совместима с чипами Nvidia и Qualcomm, что упрощает интеграцию в существующие платформы. Продукт будет предлагаться рынку по модели лицензирования ПО для автопроизводителей.
tech.yahoo.com
@ai_machinelearning_big_data
#news #ai #ml
🎧 MiniMax продолжают жечь и выпускают генератор речи
🧁 Voice Design — продвинутая кастомизация генерации голоса:
• Позволяет задавать текст, голос, тон, эмоции, можно клонировать голос.
• Продвинутая кастомизация и мультиязычная поддержка
Попробовать можно здесь →https://minimax.io/audio
@ai_machinelearning_big_data
#audio #ai #ml #MiniMax
✔️ GitHub Copilot вводит плату за продвинутые запросы с 18 июня 2025 года.
GitHub объявил о начале тарификации премиум-запросов в Copilot для всех платных планов с 18 июня 2025 года. Теперь пользователи будут получать ежемесячный лимит таких запросов, а неиспользованные остатки сгорают в конце месяца.
Премиум-запросы требуются для работы с мощными моделями вроде GPT-4.5 или Claude Opus 4, где каждый запрос умножается на коэффициент сложности (GPT-4.5 «съедает» 50 единиц за раз). Для бесплатного тарифа доступ ограничен: 2000 автодополнений кода и 50 премиум-запросов в месяц, причем все чаты считаются как "премиум".
Платные планы предлагают неограниченный доступ к базовым моделям (GPT-4.1, GPT-4o), но дополнительные запросы сверх лимита обойдутся в $0.04 за штуку. Если лимит исчерпан, можно переключиться на базовые модели — правда, их скорость зависит от нагрузки.
github.com
✔️ OpenAI разрабатывает меры безопасности для биологических исследований с применением ИИ.
OpenAI предупредила, что ее будущие модели могут представлять повышенный риск создания биологического оружия. Чтобы предотвратить злоупотребления, OpenAI разрабатывает комплексную систему ограничений: обучение моделей игнорировать опасные запросы, автоматический мониторинг подозрительной активности, проверку экспертов и «Red Teams», тестирующие уязвимости.
Компания сотрудничает с лабораториями и правительствами, чтобы улучшить безопасность синтеза ДНК и создать системы раннего обнаружения патогенов. Для тех, кто работает с ИИ в научных целях, планируется отдельный доступ к мощным инструментам, при условии строгого контроля. В июле OpenAI проведет саммит по биозащите, чтобы объединить усилия государств и частного сектора в борьбе с новыми угрозами.
openai.com
✔️ Wix покупает вайбкодинг-платформу Base44 за $80 млн.
Wix, популярный конструктор сайтов, приобрел Base44 — платформу вайбкодинга, позволяющую создавать приложения через текстовые запросы. Сделка оценивается в $80 млн, с возможными доплатами до 2029 года в зависимости от роста пользователей или выручки.
Base44 останется независимой, сохранив текущие инструменты: управление базами данных, аутентификацию, облачное хранение и хостинг. Платформа, насчитывающая 40 тыс. пользователей, недавно добавила чат-бота на основе ИИ для упрощения разработки.
techradar.com
✔️ Google использует миллиарды видео с YouTube для обучения ИИ.
YouTube подтвердил, что Google использует его архив из 20 млрд. видео для тренировки ИИ-моделей, включая Veo 3. Компания утверждает, что задействует лишь часть контента, соблюдая договоры с авторами, но не уточняет деталей. Создатели, чьи ролики могут попадать в обучающие наборы, не могут отключить такую опцию.
Эксперты опасаются, что это создаст конфликт интересов: ИИ, обученный на их материалах, может конкурировать с самими авторами. Некоторые уже выразили недовольство, подчеркнув, что не знали о таком использовании своего контента.
При этом ежедневно на YouTube добавляется несколько десятков миллионов новых видео - это потенциальный «корм» для алгоритмов. Вопрос регулирования ИИ и защиты прав авторов остаётся открытым, хотя YouTube ссылается на прозрачность своих политик.
cnbc.com
✔️ MiniMax выпустила видеомодель Hailuo 02.
MiniMax, в рамках пятидневного марафона релизов "MiniMax Week" представила второе поколение видео-модели Hailuo 02, улучшенной за счет архитектуры NCR. Модель выросла в 3 раза по количеству параметров, при этом разработчики обещают улучшенное качество и разнообразие контента, но технические детали NCR пока не неизвестны.
Hailuo 02 справляется со сложными сценариями и по данным бенчмарка Artificial Analysis Video Arena она уступила только Bytedance Seedance, но обошла Google Veo 3.
Доступны 3 варианта генераций: 768p на 6/10 секунд и 1080p на 6 секунд. Цена в API за 6-секундный ролик в 768p — $0,28, а 1080p — $0,49. Модель доступна через веб-интерфейс, мобильное приложение или API.
mp.weixin.qq.com
@ai_machinelearning_big_data
#news #ai #ml
Выбираете магистратуру? Обратите внимание на бесплатные партнёрские программы Яндекса в топовых вузах России!
🔹 «Аппаратная разработка умных устройств» — межуниверситетская магистратура в НИУ ВШЭ и МФТИ. Вы будете решать реальные задачи, с которыми работают инженеры сервиса «Алиса и Умные устройства Яндекса».
🔹 «Искусственный интеллект в робототехнике» — программа в Сколтехе, основанная на опыте Яндекс Маркета. Вас ждёт работа с кейсами, где ИИ меняет процесс логистики и автоматизации.
Программы разрабатывались при участии экспертов Яндекса — действующих практиков в ML и Data Science, а также опытных преподавателей, — поэтому обучение построено на самых актуальных знаниях и реальных задачах.
🚀 Если хотите не просто получить диплом, а вырасти в сильного специалиста, переходите на сайт и выбирайте программу!
✔️ МТС Web Services и НИУ ВШЭ открыли набор на второй поток магистратуры по ИИ
Абитуриентов приглашают на магистерскую программу «Исследования и предпринимательство в искусственном интеллекте», ее анонсировали на True Tech Day. Обучение пройдет в московском кампусе ВШЭ, всего будет 30 оплачиваемых мест от МТС.
Программу создали на основе актуальных задач индустрии. Задача - научить применять передовые технологии, например, языковые модели и распознавание речи.
Лучших студентов пригласят на стажировку и работу в МТС Web Services уже во время обучения. Часть учебы может пройти за границей в рамках программы академического обмена. Подать документы можно будет с 20 июня.
@ai_machinelearning_big_data
Высшее на новом уровне: онлайн-магистратура от Яндекса и НИЯУ МИФИ. Здесь фундаментальные знания и практика для карьерного роста, а ещё — учёба, которую можно совмещать с работой и жизнью.
IT‑специальность с экспертизой Яндекса + диплом магистра гособразца = новая ступень в карьере. Приёмная кампания уже идёт!
Все подробности — на дне открытых дверей:
— Разбор совместной программы с НИЯУ МИФИ.
— Всё о формате прикладной онлайн-магистратуры: что взяли от классического высшего, а что добавили из опыта специалистов Яндекса.
— Общение с экспертами из вуза и ответы на вопросы.
— Всё про поступление: сроки, экзамены, документы, оплата и образовательный кредит.
▷ Ждём вас 26 июня в 19:00 мск.
→ Зарегистрироваться на встречу
🚀 Cosmos-Predict2 — новая открытая версия видео-модели для Physical AI от NVIDIA!
Cosmos-Predict2 — ключевая часть экосистемы World Foundation Models (WFMs), созданная для Physical AI. Модель умеет предсказывать будущее состояние визуального мира, используя текст и видео. Cosmos разработан для ускорения обучения моделей, которые понимают физику, среду и действия — от автономных автомобилей до роботов. Выглядит очень интересно.
Это самое мощное поколение моделей в экосистеме Cosmos. Модель заметно улучшена по сравнению с Predict1:
🎯 лучшее качество видео
🧠 точнее соответствует текстовому описанию
🎥 более реалистичная динамика движения
📊 Cosmos-Predict2 превосходит другие open-source видео foundation-модели.
▪ Веса
▪ Полный код для инференса и обучения (с туториалами)
@ai_machinelearning_big_data
#Cosmos #NVIDIA
AI-инфраструктура Авито: практические решения для LLM и VLM
На Data Fest 2025 команда Авито показала, как устроена их внутренняя ML разработка. В основе большинства продуктовых ИИ-решений — собственная языковая модель A-Vibe (до 7 млрд параметров, обучена на 700 млрд токенов). Для нее специально сделали токенизатор под русский язык — он обрабатывает тексты на 29% эффективнее стандартных. Это позволило в два раза ускорить работу модели. A-Vibe уже работает в продакшене и заняла первое место среди моделей до 7 миллиардов параметров в бенчмарке МЕРА.
Для техподдержки сделали инструмент на базе LLM: он переписывает ответы агентов, чтобы они звучали более эмпатично и по-человечески, и саммаризует обращения при передаче между сотрудниками. Агенты довольны: 97% отметили, что стало удобнее.
Под все это в Авито построили свою ML-платформу. В ней есть хранилище признаков для моделей, система разметки с проверкой качества и решение Aqueduct — оно встраивается прямо в модель и экономит до 30% ресурсов на инференсе. Платформа уже позволяет запускать продакшен-модели без программирования, через no-code интерфейс.
Стажеры тоже работают с реальными задачами — например, обучают модели с нуля и оптимизируют пайплайны. Один такой проект помог в 10 раз сократить расходы на проверку звонков.
Отдельный блок на фестивале занял ML Cup от Авито. Участники решали задачи по рекомендациям и поиску дублей — те же, что крутятся в продакшене и обрабатывают 4 миллиарда событий в день. За два месяца подали 6500 решений, в конкурсе участвовало почти 900 человек.
Вот как изменилась доля трафика на рынке ИИ за последние полгода:
🗓️ 6 месяцев назад:
🥇 ChatGPT: 87,5%
🥈 Google: 5,4%
🥉 Perplexity: 2,0%
⚡ Claude: 1,6%
🗓️ 3 месяца назад:
🥇 ChatGPT: 77,6% (−9,9%)
🥈 DeepSeek: 8,1% (новый игрок!)
🥉 Google: 4,9%
🤖 Grok: 2,7% (входит в игру от X)
🚀 Perplexity: 2,0%
🗓️ 1 месяц назад:
🥇 ChatGPT: 80,2% (+2,6%)
🥈 Google: 6,1% (+1,2%)
🥉DeepSeek: 5,9% (−2,2%)
🤖 Grok: 2,4%
🚀 Perplexity: 1,6%
⚡ Claude: 1,2%
🗓️ Сейчас:
🥇 ChatGPT: 78,9% (−1,3%)
🥈 Google: 8,0% (+1,9% 📈)
🥉 DeepSeek: 5,3% (−0,6%)
🤖 Grok: 2,1% (−0,3%)
🚀Perplexity: 1,7% (+0,1%)
⚡ Claude: 1,4% (+0,2%)
Главные выводы:
- ChatGPT по-прежнему лидирует, но понемногу теряет долю рынка (−8,6% за полгода).
- Google стабильно растёт (+2,6% с прошлого года).
- DeepSeek мощно стартовал, но в последнее время сдал позиции.
- Grok и Perplexity держатся, а Claude показывает небольшой рост.
@ai_machinelearning_big_data
#GenAI #ТрендыРынка
📈 Количество пользователей растет у всех , но ChatGPT — вне конкуренции
Но ChatGPT растет быстрее всех.
Почти все крупные сайты растут, но ChatGPT показывает непрерывный и аномальный взлёт. В мае 2025 года его посещаемость выросла на +6,82% по сравнению с апрелем.
И это говорит о двух вещах:
1️⃣ ИИ стал по-настоящему массовым
Все меньше людей , которые не использует ИИ — в работе, учёбе или просто в быту. Это уже не будущее — это часть повседневности.
2️⃣ OpenAI наращивает отрыв
Именно поэтому GPT‑5 — будет не просто новой моделью, это стратегическая ставка на доминирование на ИИ рынке.
У модели есть шанс пробить магическую планку в 1 миллиард пользователей и окончательно закрепить лидерство OpenAI.
@ai_machinelearning_big_data
#chatgpt #openai #news #ml #ai
🛎 Готовы делиться опытом в прикладном машинном обучении?
Practical ML Conf возвращается 27 сентября — это ежегодная конференция от Яндекса про технологии, которые уже сегодня работают на бизнес. Команда ждёт практичные и глубокие доклады по направлениям:
• CV
• NLP
• Speech
• Recommendation Systems
• MLOps
• Data Science
🎯 Темы оцениваются по 4 критериям:
полезность, новизна, сложность и применимость.
👥 Что получают спикеры:
⚪️ Консультации от экспертов по структуре и содержанию
⚪️ Прогоны с тренером по публичным выступлениям
⚪️ Помощь дизайнеров с презентацией
⚪️ Нетворкинг с другими спикерами и экспертами
⚪️ Поддержку в продвижении — о лучших докладах расскажут в каналах Яндекса
⚪️ Участие в конференции без отбора + инвайт для +1
⚪️ И главное — возможность стать частью сильного ML-сообщества
🗓 Заявки принимаются до 23 июня.
🛄 Встретимся на Practical ML Conf!
⚡️Релиз Qwen3-Embedding и Qwen3-Reranker
✨ Главное:
✅ Модели на 0.6B, 4B и 8B параметров
✅ Поддержка 119 языков
✅ Sota на MMTEB, MTEB и MTEB-Code
✅ Открытый код на Hugging Face, GitHub и ModelScope
✅ Доступ через API на Alibaba Cloud
🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.
🟡 Qwen3-Embedding: https://huggingface.co/collections/Qwen/qwen3-embedding-6841b2055b99c44d9a4c371f
🟡Qwen3-Reranker: https://huggingface.co/collections/Qwen/qwen3-reranker-6841b22d0192d7ade9cdefea
🟡GitHub: https://github.com/QwenLM/Qwen3-Embedding
🟡Modelscope: https://modelscope.cn/organization/qwen
@ai_machinelearning_big_data
#qwen