Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml
🚨 xAI привлекает $5 млрд через выпуск облигаций + $300 млн через продажу акций при оценке в $113 млрд
Компания Илона Маска xAI проводит две крупные финансовые операции:
Выпуск долговых обязательств на $5 млрд и продажу акций на $300 млн .
Подробности:
🔹 Облигации ($5 млрд)
Выпуск организует Morgan Stanley.
Средства пойдут на общие корпоративные нужды — например, развитие технологий, инфраструктуры или покрытие издержек.
🔹 Продажа акций ($300 млн)
Это вторичная эмиссия — компания не выпускает новые акции, а позволяет сотрудникам продать свои доли инвесторам , получив ликвидность (то есть выручку за свой "старый" пакет).
🔹 Оценка компании — $113 млрд
Это почти в 3,5 раза выше внутренней стоимости X (бывшего Twitter), который был куплен за $33 млрд.
Маск делает ставку на финансовые рынки, чтобы ускорить развитие xAI — раньше, чем компания представит зрелые решения.
Такой агрессивный подход может быть рискованным, но типичен для амбициозных технологических проектов и самого Маска.
Посмотрим, сыграет ли ставка 🤑
https://www.reuters.com/business/musks-xai-seeks-113-billion-valuation-300-million-share-sale-ft-reports-2025-06-02/
@ai_machinelearning_big_data
#elonmusk #grok #xai
🏸 Робот, который играет в бадминтон — и делает это всерьёз
Учёные научили четвероногого робота играть в бадминтон. Не просто двигаться — а видеть волан, рассчитывать траекторию, подходить к мячу и точно отбивать его. Всё это в реальном времени, в движении, на настоящей площадке.
🔬 Как это работает:
- 🤖 Reinforcement Learning — робот учится на собственных ошибках
- 👁 Компьютерное зрение — отслеживание волана даже с шумами, как в реальных камерах
- 🧠 Модель предсказания траектории — чтобы "читать" мяч как опытный игрок
- 🦿 Координация движения ног и руки — не падать и успевать отбивать
💥 Что получилось:
Робот реально может играть против человека. Он не просто двигается — он принимает решения, адаптируется и бьёт по мячу в прыжке.
Это не анимация. Это реальный робот. И он уже работает.
@data_analysis_ml
Глава NVIDIA Дженсен Хуанг признал немыслимое:
🇨🇳 Китайские ИИ-компании стали по-настоящему сильными.
🇺🇸 Санкции США провалились.
💥 Чипы Huawei уже сравнимы с NVIDIA H200.
И это только начало.
«Китай раньше давал нам 95% выручки. Теперь — лишь 50%.»
«Половина ИИ-учёных мира — в Китае.»
«Они закрывают разрыв и растут экспоненциально.»
🗣️ А вот что Хуанг говорит прямо:
«Я надеюсь, что все ИИ-разработчики будут строить решения на американском технологическом стеке.»
Развивайтесь сколько хотите — но на наших чипах, под нашим контролем.
Но Китай отвечает:
Мы строим не просто модели. Мы строим технологический суверенитет.
🇺🇸→🇨🇳 Санкции, которые ускорили то, что хотели остановить
Все крупнейшие китайские технокомпании сейчас отказываются от чипов Nvidia и переходят на собственные ИИ-процессоры.
Не по желанию — по необходимости. Причина? Экспортные ограничения США.
🎯 А теперь главное:
Изначальная цель этих санкций была не дать Китаю развить своё чипостроение.
А получилось наоборот — вся страна, крупнейший рынок микросхем в мире, переходит на китайские чипы.
Всё, чтобы не зависеть от США.
📉 Иронично, но факт:
Если бы США не сделали ничего, Китай развивал бы отрасль медленно, хаотично, с оглядкой на рынок.
И американские компании (включая ту же Nvidia) продолжали бы доминировать.
А теперь — нет.
@ai_machinelearning_big_data
#news #ai #ml #NVIDIA #usa #china
🤖 Boston Dynamics показали, как их гуманоидный робот Atlas «видит» мир и взаимодействует с ним
В новом видео команда ИИ-инженеров показала, как устроена система восприятия Atlas — и это уже не просто «робот с камерами», а почти полноценный агент с чувством пространства и контекста.
🧠 Что умеет Atlas:
🔹 Понимает форму и назначение объектов в реальной среде
🔹 Объединяет 2D и 3D восприятие
🔹 Использует ключевые точки для ориентации в пространстве
🔹 Отслеживает позы объектов с учётом их движения и перекрытия
🔹 Сливает визуальные данные, кинематику и знания об объектах в одну систему
🔹 Имеет сверхточную калибровку для координации «глаз–рука»
Atlas может не просто находить предмет, но понимать, *что это*, *зачем оно нужно* и *как его лучше схватить*, даже если оно наполовину скрыто.
Команда инженеров работает над единой моделью, которая объединяет восприятие и управление. Это шаг от просто «пространственного ИИ» к настоящему физическому интеллекту.
Их робот выглядит на данный момент самым передовым, как вы считаете?
@ai_machinelearning_big_data
#Atlas #BostonDynamics #AI #Robotics #Перцепция #ИскусственныйИнтеллект
✔️ Этот стрим не настоящий… он полностью сгенерирован с помощью Veo 3.
@ai_machinelearning_big_data
#Veo #google
✔️ Nvidia презентовала NVLink Fusion.
Nvidia анонсировала технологию NVLink Fusion, открывающую доступ NVLink для сторонних разработчиков. Это позволит партнерам использовать собственные CPU и ИИ-ускорители в связке с решениями Nvidia на уровне серверной стойки. NVLink Fusion обеспечивает 14-кратное преимущество в пропускной способности по сравнению с PCIe и интегрируется через чиплеты, с ним масштабирование кластеров для решения ИИ-задач станет проще.
В экосистему вошли Marvell, MediaTek и разработчики ПО Cadence и Synopsys, предлагающие инструменты для проектирования. Fujitsu планирует соединить свои 144-ядерные процессоры Monaka с архитектурой Nvidia для создания энергоэффективных ИИ-систем.
По словам Nvidia, первые решения на базе NVLink Fusion уже доступны для внедрения.
tomshardware.com
✔️ Microsoft разрабатывает открытый протокол для ИИ-поиска на любом сайте.
NLWeb — открытый протокол, который позволяет внедрять чат-боты с поддержкой естественного языка на любые сайты. По словам техэксперта Microsoft, система дает разработчикам инструменты для создания персонализированных ИИ-сервисов за минуты. Вместо дорогого индексирования данных NLWeb использует RSS-фиды и векторные базы, подключая даже бюджетные LLM.
Основная цель разработки протокола — сайты получат собственные ИИ-решения без зависимости от внешних LLM-провайдеров.. Microsoft уже сотрудничает с TripAdvisor и Shopify, продвигая протокол как альтернативу индивидуальным сделкам с OpenAI.
theverge.com
✔️ Intel представила видеокарты Arc Pro B50 и B60.
На Computex 2025 Intel анонсировала линейку Arc Pro «Battlemage» на базе архитектуры Xe2 и 5 нм чипа BMG-G21. Младшая модель B50 с 16 ГБ памяти заточена под профессиональную визуализацию, а B60 с 24 ГБ — под задачи ИИ-инференса. Энергопотребление у B50 всего 70Вт, а у флагманской модели до 200Вт через 600 Вт разъем питания с 12V2x6-коннектором.
Проект Battlematrix позволяет объединить до 8 GPU с суммарным объёмом VRAM до 192 ГБ для работы с ИИ-моделями на 70+ млрд. параметров
Выпуском карт, которые поступят в продажу в 3 квартале 2025 года, займутся партнеры Intel: ASRock, Gunnir и Maxsun. По заявлениям Intel, новые решения уже прошли сертификацию в основных профессиональных приложениях.
techpowerup.com
✔️ LLM страдают от «английского акцента» в других языках.
Apple опубликовала исследование о том, что многоязычные LLM часто генерируют неестественные тексты на французском, китайском и других языках из-за доминирования английского в обучающих данных.
Для оценки проблемы разработали метрики на основе распределения лексики (Jensen-Shannon Divergence) и синтаксиса (анализ деревьев зависимостей через ядро Weisfeiler-Lehman). Тесты показали: даже топовые модели отстают от человеческих текстов, особенно в языках, далеких от английского.
Решение нашли в тонкой настройке через DPO. Используя датасеты с естественными и искусственно искажёнными ответами, модели учатся избегать англицизмов. Llama-3.1 после доработки стала реже использовать конструкции вроде «победитель был объявлен» в китайском, заменяя их на более натуральные формулировки.
machinelearning.apple.com
✔️ Bilibili выпустила открытую модель Index-AniSora для генерации аниме-видео с контролем стиля и движений.
Index-AniSora — модель для создания аниме-контента в разных стилях: от сериалов и манги до VTuber-анимации. Система построена на диффузионных моделях с улучшенным контролем времени и пространства и позволяет точно настраивать движения персонажей, мимику и даже отдельные кадры.
В релизе 2 версии: AniSoraV1.0 (на базе CogVideoX-5B) и AniSoraV2.0 (Wan2.1-14B). Вторая версия работает стабильнее, но первую можно запустить на потребительских GPU.
Модели обучались на датасете из 10 млн. пар "видео-тект" и 30 тыс. ручных оценок по 6 параметрам.
Bilibili на Github
@ai_machinelearning_big_data
#news #ai #ml
Дженсен Хуанг CEO NVIDIA:
ИИ, способный к рассуждению, открыл путь к совершенно новому классу агентных систем.
🚀 Будущее — за гибридными командами, где один человек работает вместе с тысячей интеллектуальных агентов.
🧬 Один биоинженер становится суперинженером, опираясь на целую армию ИИ-помощников, способных не просто выполнять команды, а анализировать, думать и принимать решения.
Это не просто автоматизация — это новый уровень сотрудничества между человеком и разумными машинами.
@ai_machinelearning_big_data
#NVIDIA #future #ai
🖥 ChatGPT обогнал Википедию по количеству пользователей.
Раньше Википедия была главным инструментом для тех, кто хотел получить знания.
Всего за несколько лет ИИ стал главным средством для обучения.
И пути назад уже нет.
https://www.reddit.com/r/wikipedia/comments/1kn8cms/oc_chatgpt_now_has_more_monthly_users_than/?rdt=59790
#chatgpt #ai
Начните свой путь в ML для финансового анализа — два бесплатных вебинара
🎓 Урок 1: Технический анализ финансовых рынков: графики и индикаторы: https://otus.pw/pn59/
Углубитесь в методы технического анализа, научитесь читать графики, распознавать тренды и использовать индикаторы для генерации торговых сигналов.
🎓 Урок 2: Построение торгового агента на базе алгоритмов обучения с подкреплением: https://otus.pw/pn59/
Разработайте своего первого торгового агента, использующего обучение с подкреплением. Этот урок позволит вам применить современные методы искусственного интеллекта для автоматизации торговых стратегий.
➡️ Регистрируйтесь на бесплатные уроки, чтобы ознакомиться с форматом обучения и получить скидку на курс «ML для финансового анализа»: https://otus.pw/pn59/?erid=2W5zFJAG6yN
#реклама
О рекламодателе
✔️ IBM Linux ONE Emperor 5: мейнфрейм для эпохи ИИ.
IBM представила новый мейнфрейм IBM Linux ONE Emperor 5. Основа системы — процессор Telum II с 5-нм технологией Samsung: 8 ядер на 5.5 ГГц, кэш L4 до 2.88 ГБ и встроенный ИИ-ускоритель на 24 трлн. операций в секунду. Для тех, кому мало, к концу 2025 года обещают IBM Spyre Accelerator с 32 ядрами.
Платформа оптимизирована под ИИ: AI Toolkit упростит разработку, а ОС Red Hat OpenShift AI позволит управлять VM и контейнерами в одном интерфейсе. Безопасность тоже не забыли. Данные шифруются даже в памяти (confidential computing), а поддержка постквантовых алгоритмов NIST защитит от атак будущего. IBM заявляет, что Emperor 5 сократит для владельцев совокупную стоимость владения на 44% за 5 лет по сравнению с x86-серверами. Система обещает доступность 99.999999% — почти без простоев.
zdnet.com
✔️ Figma запустила ИИ-инструменты для сайтов, прототипирования и маркетинга.
Figma Sites, в нем на основе прототипов можно генерировать адаптивные сайты с анимациями. Инструмент позволяет быстро публиковать проекты, а правки вносить без сохранения, контент можно редактировать совместно напрямую в интерфейсе. Для сложных элементов доступна генерация кода или ручная настройка. Figma Make — инструмент для прототипирования веб-приложений: по описанию ИИ создает каркас, который команда может дорабатывать.
Figma Buzz: шаблоны с бренд-ассетами, массовая генерация креативов из таблиц и ИИ-фоны для изображений. Обновленный Figma Draw теперь включает продвинутое векторное редактирование — кисти и текстуры. Все инструменты доступны в рамках подписки от 8$/месяц.
figma.com
✔️ К 2026 году большинство компаний введут должность Chief AI Officer.
Согласно исследованию Amazon, 60% организаций уже имеют Chief AI Officer (CAIO), а еще 26% планируют создать эту роль к 2026 году. CAIO станет ключевым звеном в координации ИИ-стратегий на фоне интереса к генеративному ИИ: 45% компаний назвали его приоритетом на 2025 год, обогнав традиционные инструменты кибербезопасности (30%).
Несмотря на активные эксперименты (90% компаний тестируют ИИ), только 44% перешли к полноценному внедрению. Главные барьеры — дефицит кадров (55%), высокая стоимость разработки (48%) и проблемы с качеством данных. При этом 92% организаций намерены усиленно нанимать специалистов по ИИ в 2025 году, а 56% уже запустили программы обучения.
Однако лишь 14% компаний имеют четкий план цифровой трансформации — к 2026 году показатель вырастет до 76%, но четверть все еще останется без стратегии.
amazon.com
✔️ ChatGPT набирает обороты по трафику.
Свежие данные Similarweb показывают, что ChatGPT стал одним из самых посещаемых сайтов в мире — в апреле 2025 года на него пришлось 4,78 млрд визитов. Это на 18% больше, чем у сети X. При этом трафик сервиса резко падает по выходным: в будни активность выше на 50%. Это подтверждает, что инструментом в основном пользуются для работы, учебы и исследований.
Техническая сторона тоже отражает тренд: на выходных API OpenAI обрабатывает запросы быстрее из-за снижения нагрузки. Интересно, что пользователи ChatGPT редко переключаются на другие ИИ-сервисы — только 4% из них пробуют Perplexity. Для сравнения: 86% аудитории Claude параллельно используют ChatGPT. Google Gemini хотя и набирает популярность, особенно на Android, он все еще уступает ChatGPT по лояльности и охвату.
SimilarWeb в сети X(ex-Twitter)
✔️ OpenAI запускает инициативу развития ИИ для стран.
OpenAI анонсировала программу "OpenAI for Countries" в рамках проекта Stargate — масштабного плана по развитию ИИ-инфраструктуры. Компания предлагает странам за пределами США присоединиться к созданию локальных дата-центров, обеспечивающих суверенитет данных и адаптацию ИИ под национальные нужды. Инициатива включает кастомизацию ChatGPT для здравоохранения, образования и госуслуг с учетом языковых и культурных особенностей. Участие в проекте подразумевает вклад в глобальную сеть Stargate. Первая фаза — 10 пилотных проектов с отдельными странами. Переговоры с заинтересованными государствами уже ведутся через представительства компании.
openai.com
✔️ Google анонсировала функцию Simplify для iOS.
В приложении Google для iOS появилась новая функция Simplify, которая с помощью ИИ делает сложные или технические тексты в интернете проще для понимания. Разработка использует модель Gemini от Google Research: она переформулирует контент, сохраняя ключевые детали, но убирая лишнюю сложность. Тесты показали, что после упрощения пользователи лучше усваивают информацию. Функция не только облегчает обучение, но и удерживает пользователей в экосистеме Google, конкурируя с ChatGPT. Обновление уже доступно в AppStore для iOS.
9to5google.com
✔️ Вышла Gemini 2.5 Pro Preview.
Google досрочно выпустила обновлённую версию Gemini 2.5 Pro Preview. Модель теперь лидирует в рейтинге WebDev Arena благодаря способности создавать эстетичные и функциональные веб-приложения.
Среди новшеств — продвинутая работа с видео: модель преобразует ролики в интерактивные приложения, например, учебные программы на базе YouTube-видео. Для фронтенд-разработчиков упростилась реализация фич: Gemini 2.5 Pro генерирует CSS-код, подбирая стили под дизайн, и даже создает анимации. Обновление также устраняет прошлые ошибки в вызове функций и повышает их срабатывание. Модель доступна через Gemini API в Google AI Studio и Vertex AI для корпоративных клиентов — цена осталась прежней.
developers.googleblog.com
✔️ OpenAI достигла соглашения о покупке Windsurf.
OpenAI договорилась о покупке Windsurf за $3 млрд. Это станет крупнейшей сделкой компании в условиях растущей конкуренции на рынке ИИ-инструментов для программистов. По данным источников, соглашение ещё не закрыто, а стороны пока отказались от комментариев.
Этим шагом OpenAI стремится закрепиться в нише, где набирают обороты стартапы вроде Anysphere. Покупка Windsurf не только расширит ее инструментарий, но и даст преимущество в гонке за лидерство в создании систем, генерирующих код по текстовым запросам.
bloomberg.com
✔️ LTX Studio выпустила открытую видео-модель с рекордной скоростью и качеством.
LTX Studio представила новую модель для генерации видео, которая сочетает скорость, детализацию и контроль. Свыше 13 млрд. параметров и технология multiscale rendering позволяют добиться плавного движения, четкой картинки и минимума артефактов даже в динамичных сценах.
Суть multiscale rendering — анализ сцены на разных уровнях детализации, который сохраняет крупные объекты стабильными, не теряя мелких элементов. Результат: реалистичная анимация и согласованность между кадрами.
Модель работает до 30 раз быстрее аналогов при том же качестве и позволяет управлять ключевыми кадрами и камерой — можно буквально «режиссировать» каждый момент. Она доступна бесплатно на платформе LTX Studio или для локального инференса, веса опубликованы на HuggingFace.
LTX в сети Х (ex-Twitter)
✔️ Обновление ComfyUI: нативные API-ноды и новый дизайн.
ComfyUI выпустила масштабное обновление. Теперь пользователи получают 65 готовых API-нод, которые позволяют подключать платные облачные модели — от Veo2 от Google до GPT4o от OpenAI. Обновление объединяет 11 семейств моделей, включая генерацию видео (Pika 2.2, MiniMax) и изображений (Stable Diffusion 3.5, Ideogram V3).
Цены совпадают с оригинальными API, а платформа остается бесплатной и открытой. В планах — поддержка своих API-ключей, параллельное выполнение задач и оптимизация для видео. Вместе с этим ComfyUI обновила внешний вид: логотип из «кубиков» отсылает к графам воркфлоу, а яркие цвета подчеркивают баланс между творчеством и серьезностью инструмента.
blog.comfy.org
@ai_machinelearning_big_data
#news #ai #ml
✔️ Gemini планирует интеграцию с GitHub.
Gemini для GitHub упростит работу с чужим кодом. Интеграция позволяет прикрепить репозиторий к запросу и получить от ИИ помощь: разобраться в структуре проекта, объяснить функции, предложить оптимизацию или найти баги.
Пока функционал ограничен: нельзя просматривать историю коммитов, пул-реквесты или вносить изменения напрямую в репозиторий. Загрузить можно только один проект (до 5000 файлов и 100 МБ), а для приватных репозиториев потребуется привязать GitHub-аккаунт к Google. Импорт доступен через веб-версию Gemini, но начатый диалог можно продолжить в мобильном приложении. Интеграция появится в настройках Gemini в ближайшее время.
9to5google.com
✔️ Релиз моделей серии Phi-4 с ризонингом.
Microsoft выпустила Phi-4-reasoning, Phi-4-reasoning-plus и Phi-4-mini-reasoning с 14 миллиардов параметров у первых двух и 3.6 млрд. у mini.
Phi-4-reasoning-plus обошёл 671-миллиардную DeepSeek-R1 в тестах AIME 2025, а mini-reasoning была создана для работы на смартфонах или IoT-устройствах: она решает задачи от школьного уровня до научных расчетов, не нагружая систему.
Детали создания доступны в техническом отчете, а сами модели - на Azure или HuggingFace.
azure.microsoft.com
✔️ Anthropic добавила интеграцию приложений и улучшила исследовательские возможности Claude .
Anthropic представила 2 ключевых обновления для своего Claude: интеграцию сторонних сервисов и расширенный инструмент для глубокого анализа. Новая функция "Integrations" позволяет подключать Claude к бизнес-приложениям вроде Confluence, Zapier или PayPal через серверы на базе протокола MCP. Это даст ИИ доступ к данным проектов, автоматизирует задачи и улучшает контекстную работу.
Параллельно запущен Advanced Research: теперь Claude может анализировать сотни источников (включая корпоративные данные и локальные диски) за несколько минут, формируя детальные отчеты со ссылками на источники. Обновление использует «рассуждающие» модели ИИ.
Функции доступны в бета-версии для подписчиков Claude Max, Team и Enterprise, а также скоро появятся в плане Pro. Anthropic также увеличила лимиты для кодинг-инструмента Claude Code.
anthropic.com
✔️ Google тестирует рекламу в диалогах с AI-чатами через AdSense.
Google начал внедрять рекламу в чаты пользователей с некоторыми сторонними ИИ-ассистентами через сеть AdSense. Функция, запущенная в этом году, уже тестировалась с стартапами Ask и Liner. Представитель компании подтвердил: «AdSense для Поиска доступен сайтам, которые хотят показывать релевантную рекламу в своих AI-диалогах».
Этот шаг выглядит попыткой монетизировать растущую популярность ИИ-чатов вроде ChatGPT или Claude, которые постепенно заменяют традиционный поиск. Ранее компания уже добавляла рекламу в ИИ-сниппеты поиска. Однако интеграция с внешними сервисами — новый этап.
bloomberg.com
✔️ Умные очки Ray-Ban будут собирать пользовательские данные для обучения ИИ.
Facebook-research внесли ключевые изменения в правила конфиденциальности своих умных очков Ray-Ban. С 29 апреля владельцы устройств больше не могут отключать сохранение голосовых записей в облаке — удалить их можно только вручную через настройки. По словам компании, аудио и транскрипты хранятся до года для улучшения продуктов, а случайные активации удаляются через 90 дней.
Фото и видео с камеры очков по-прежнему остаются в галерее смартфона и не используются для обучения ИИ, если не загружены в облачные сервисы компании или сторонние приложения. Однако голосовой помощник теперь всегда активен, пока пользователь не отключит его вручную. Это решение направлено на сбор данных для тренировки алгоритмов.
theverge.com
@ai_machinelearning_big_data
#news #ai #ml
Осенью 2021 года Яндекс впервые представил функцию закадрового перевода видео в Браузере.
Сначала система использовала два стандартных голоса — мужской и женский — затем перешла на ограниченный набор синтезированных голосов. Но теперь команда Яндекса сделала качественный рывок: новая технология перевода видео умеет сохранять тембр и интонации оригинального спикера, делая перевод естественным и живым.
✔️ Как это работает?
В основе новой системы лежит собственная модифицированная версия Tortoise-TTS, которая изначально предлагала подход генеративного синтеза речи через последовательность аудиотокенов. Однако Яндекс значительно переработал архитектуру, решив сразу несколько ключевых проблем:
1. Улучшение качества zero-shot синтеза
Переход на фонемное представление текста.
Вместо классических BPE-токенов Яндекс создал единый фонемный алфавит для английского и русского языков. Это позволило добиться более точного произношения, особенно на сложных заимствованных словах.
🟡Интеграция биометрических эмбеддингов.
Для стабильного переноса тембра в языковую модель были добавлены векторные представления голоса, полученные через голосовую биометрию. Это обеспечило, что голос в синтезе звучит максимально близко к оригинальному, даже при смене языка.
🟡Управление качеством через UTMOS.
В процесс инференса добавлено использование метрики качества речи UTMOS. Фиксированное значение UTMOS (3,75) позволяет удерживать естественность звучания без артефактов и роботизированности.
2. Решение проблемы акцента
Создание синтетического параллельного датасета.
Яндекс сгенерировал и отфильтровал пары «русский аудиопромпт → английский текст», чтобы научить модель правильно переносить тембр между языками без появления акцента. В результате процент синтеза с акцентом снизился с 50% до 5%🔥
3. Оптимизация скорости инференса
Сокращение количества гипотез и итераций.
Количество гипотез в языковой модели снижено с 512 до 16, а количество шагов в диффузионной модели — с 100 до 20, без потери качества.
Ускорение вычислений.
Использование torch.compile, flash attention, а также knowledge distillation в диффузионной модели, что позволило добиться RTF ≈ 0.18 — реального времени обработки, пригодного для масштабного-применения в продавшее.
4. Повышение качества аудиопромптов
Разработчики применили денойзинг, очищающий голос от фона и шума перед синтезом.
Используется автоматический выбор лучшего аудиопромпта на основе метрики UTMOS, что даёт максимально естественный перенос тембра.
🌟 Чего удалось добиться?
Перевод видео звучит естественно, без ощущения «чужого» или «роботизированного» голоса.
🟢Голос сохраняет интонации и тембр оригинала.
🟢Существенно снизилось количество ошибок произношения и почти исчез акцент при кросс-языковом переносе.
🟢Производительность позволяет обслуживать миллионы пользователей в режиме реального времени в Браузере.
🔜 Оценка качества
Внутренние тесты методом попарного сравнения (side-by-side) показали:
Новый перевод предпочтительнее старой версии в 72% случаев.
При сравнении с ElevenLabs:
- В полном переводе видео Яндекс выигрывает в 62% случаев.
При сравнении только качества озвучки Яндекс выигрывает в 46% случаев.
Где работает?
Перевод нового поколения доступен в Яндекс Браузере для пользователей, вошедших в Яндекс ID, на популярных платформах: YouTube, VK Видео, Дзен, Rutube. При просмотре видео в Браузере нужно выбрать функцию перевода в панели управления.
🌟 Что дальше?
Команда Яндекса продолжает развивать технологию.
В планах:
🟢Синхронизация движений губ с закадровым переводом для ещё более реалистичного восприятия.
🟢Дальнейшее ускорение инференса без потерь в качестве.
Итог:
Яндекс создал передовую систему мультиязычного генеративного синтеза, объединив глубокие фундаментальные исследования и серьёзные инженерные оптимизации. Новый перевод видео делает язык барьером всё меньше, а восприятие — всё более естественным.
@ai_machinelearning_big_data
#yandex #tts
✔️ Adobe запускает публичную бета-версию механизма маркировки сгенерированных изображений.
Adobe запустила публичную бета-версию веб-приложения Content Authenticity — бесплатного инструмента, который помогает закрепить за контентом «цифровой паспорт» (Content Credentials). С его помощью можно привязать к файлам идентификатор, ссылки на соцсети и даже запретить обучение ИИ на своих работах.
Технология объединяет криптографические метаданные, цифровые отпечатки и невидимые водяные знаки, которые сохраняются даже после скриншотов. Проверить данные можно через Chrome-расширение или Inspect-сервис.
Adobe ведет переговоры с Leica, Nikon, Samsung и OpenAI, чтобы встроить Content Credentials в камеры, смартфоны и ИИ-инструменты. Для авторов это не только защита, но и возможность повысить доверие аудитории. Пользователи, в свою очередь, получат прозрачность: «паспорт» покажет, кто и как создал контент, что особенно актуально в эпоху deepfake-угроз.
blog.adobe.com
✔️ Tavus представила липсинк-модель Hummingbird-0.
Tavus, разработчик в области ИИ-видео, запустила в превью модель Hummingbird-0 — модель для синхронизации движений губ без предварительного обучения. Теперь достаточно одного видео и аудиодорожки, чтобы «оживить» речь человека, сохранив его мимику и качество изображения.
Hummingbird-0 построен на компонентах флагманской модели Phoenix-3 и превосходит аналоги по точности синхронизации (LSE-D — 6,74) и сохранению идентичности (Arcface — 0,84). Интеграция с генераторами видео (Veo или Sora) позволяет добавлять голос даже к «немым» роликам, превращая их в полноценные истории. Модель доступна на платформах Tavus и FAL — попробовать можно уже сегодня.
tavus.io
✔️ Классические игры стали новым бенчмарком для ИИ.
Game Arena представила исследование, где платформеры и игры-головоломки используются для тестирования фундаментальных моделей. Оказалось, что Claude 3.7 или GPT-4o справляются хуже людей в задачах, требующих быстрой реакции и пространственного мышления - в Tetris модели часто ошибались при выборе блоков, а в Sokoban не могли пройти уровни, которые человек решает за минуты.
Для экспериментов игры адаптировали: добавили модули преобразования изображений в текст, «заморозку» процесса и память для долгосрочного планирования. Лучшие результаты показали модели с усиленным логическим мышлением, но разрыв с человеческим уровнем все еще значителен.
Проект открыт для разработчиков — код доступен на GitHub.
lmgame.org
✔️ Google DeepMind запустила модель генерации музыки Lyria 2 в обновленном сервисе Music AI Sandbox.
Google DeepMind представила обновление платформы Music AI Sandbox, добавив инструменты для генерации и редактирования музыки на базе ИИ. В основе — модель Lyria 2, создающая высококачественные треки с детализацией жанровых нюансов, и Lyria RealTime, позволяющая экспериментировать со звуком в реальном времени.
Новые функции включают генерацию инструментальных партий по текстовым описаниям, расширение композиций и редактирование стиля с помощью текстовых подсказок. Музыканты могут менять темп, тональность или полностью переосмыслить трек. Платформа, разработанная при участии артистов, теперь доступна в США — заявки принимаются через запись в вейтлист.
deepmind.google
✔️ YouTube тестирует AI Overviews в поиске.
YouTube начал ограниченное тестирование AI Overviews — "карусели" с ключевыми фрагментами видео в результатах поиска. Система анализирует ролики по запросам (например, «лучшие беспроводные наушники» или «музеи Сан-Франциско») и выводит «выжимку» из самых информативных моментов. Пока функция доступна лишь части пользователей YouTube Premium в США и работает на английском языке.
Тестовый период продлится недолго, а его итоги определят судьбу AI Overviews. Пользователи смогут оценивать функцию через лайки/дизлайки, а YouTube — собрать обратную связь для доработки функции.
searchengineland.com
@ai_machinelearning_big_data
#news #ai #ml
🔥 Google представила InstructPipe — AI‑редактор ML‑пайплайнов, работающий через текстовые запросы.
❔ Что такое InstructPipe?
InstructPipe — это AI-ассистент, который преобразует текстовые команды в визуальные блок-схемы, представляющие собой пайплайны машинного обучения.
Система использует два модуля больших языковых моделей (LLM) и интерпретатор кода для генерации псевдокода и его визуализации в редакторе графов.
Это low-code подход: вы просто соединяете готовые компоненты (ноды) без написания кодп.
🌟 Как это работает?
1️⃣Пользователь вводит текстовую инструкцию, описывающую желаемый пайплайн.
2️⃣ LLM модули обрабатывают инструкцию и генерируют соответствующий псевдокод.
3️⃣Интерпретатор кода преобразует псевдокод в визуальную блок-схему, которую можно редактировать и настраивать.
✔️ Преимущества InstructPipe
🟡 Доступность: Позволяет новичкам в программировании создавать сложные ML пайплайны без необходимости писать код.
🟡Гибкость: Принимает на выход текстовое описание в любом виде, нет строго формата.
🟡Снижение порога входа: Упрощает процесс обучения и прототипирования мл проектов.
🔜 Подробнее
@ai_machinelearning_big_data
#Google #InstructPipe
💵 Годовой доход Anthropic увеличился с 1 млрд долларов до 3 млрд долларов (Annual Recurring Revenue) всего за пять месяцев.
Это обусловлено высоким спросом со стороны бизнеса на ИИ, в сфере генерации кода.
🆚 OpenAI, главный конкурент Anthropic, по данным источников, ожидает $12+ млрд выручки к концу 2025 года, по сравнению с $3,7 млрд в прошлом году. Однако эта сумма включает весь доход, а не только годовую прогнозируемую выручку (ARR), как у Anthropic. Reuters не удалось определить ARR OpenAI.
Anthropic продолжают развивать линейку Claude и усиливает позицию как B2B-ориентированный аналог OpenAI.
▶️ Подробнее
@ai_machinelearning_big_data
#Anthropic #ai #news
✔️ Memvid — когда видео становится базой знаний
Зачем держать миллионы текстов в RAM, если их можно сжать в видео?
Memvid - это решение, которое преобразует текстовые данные в видеофайлы.
И при этом — мгновенно осуществлять поиск по содержимому, с помощью обычных вопросов — как в чате с ИИ.
Никаких векторных БД. Никаких серверов. Только .mp4.
Ключевые фишки:
- Видео = база данных — всё в одном .mp4
- Семантический поиск — задаёшь вопрос — находишь ответ
- Чат-интерфейс — общайся с контентом как с ассистентом
- Импорт PDF — позволяет подгружать документы напрямую
- Мгновенный отклик — поиск за миллисекунды
- 10x сжатие — хранит в 10 раз меньше, чем обычные БД
- Поддержка OpenAI / Anthropic / локальных LLM — на твой выбор
🌟 Где это реально полезно:
- Индексируй тысячи книг и PDF в один файл
- Сделай себе AI-память по всем заметкам
- Переводи курсы в формат "умного видео"
- Обрабатывай и находи нужное в научных статьях
- Создать свою корпоративную AI-базу — без серверов
🟡 Установка: pip install memvid
🔗 GitHub
@ai_machinelearning_big_data
#embedded #ai #ml
💥 Ищете возможности в Data Science и ML? На курсе «Специализация Machine Learning» мы научим вас не просто работать с данными, а использовать мощные алгоритмы для бизнес-прогнозирования.
Программа подходит как новичкам, так и профессионалам: от системных аналитиков до инженеров, которые хотят научиться ML с нуля. Мы дадим вам практические знания и опыт, используя актуальные инструменты.
На курсе вы освоите Python, библиотеки pandas, sklearn, глубокое обучение и анализ временных рядов. Пройдете обучение по самым современным фреймворкам и научитесь решать реальные задачи.
➡️ Записывайтесь в группу прямо сейчас: https://tglink.io/ff8f84b04b2a?erid=2W5zFGaq6LG
Чтобы успеть воспользоваться 🏷10% скидкой на курс «Специализация Machine Learning» и 🎁 бонусным промокодом ML5 и учиться весь год по ценам мая. Скидка на курс действует по 31.05 включительно!
#реклама
О рекламодателе
🚀 Mistral AI представила Devstral — новый open-source LLM для автономных кодинг-агентов
Mistral AI представил Devstral — свою модель, специально разработанную для решения реальных задач в области кодинга.
Созданная в сотрудничестве с All Hands AI, Devstral демонстрирует выдающиеся результаты на бенчмарке SWE-Bench Verified, превзойдя все существующие open-source модели с результатом 46,8%.
💡Лицензирвоание: Apache 2.0 — свободное коммерческое использование.
https://huggingface.co/mistralai/Devstral-Small-2505
@ai_machinelearning_big_data
#Devstral #MistralAI #Кодинг #ИИ #OpenSource
🚀Сегментация временных рядов — это ключевая технология для аналитиков и Data Scientist, которые хотят повышать точность прогнозов и выявлять важные паттерны в данных.
🗓️ На открытом вебинаре 26 мая в 20:00 МСК мы разберем, как сегментировать временные ряды без разметки, используя лучшие подходы и методы машинного обучения. Вы познакомитесь с реальными кейсами и методами сегментации и научитесь применять их в своих проектах.
💻 Вы сможете эффективно работать с временными рядами в Python, улучшить качество анализа данных и решать прикладные задачи с помощью передовых технологий.
🔗 Регистрируйтесь на вебинар и получите скидку на программу обучения «Machine Learning. Advanced»: https://otus.pw/In6U/?erid=2W5zFHUgJba
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
📌nanoVLM: простой и мощный инструмент для экспериментов с VLM.
nanoVLM - проект, вдохновленный подходом nanoGPT от Andrej Karpathy, который предлагает минималистичную реализацию VLM на чистом PyTorch.
Код проекта настолько прост, что даже новичок быстро поймет, как устроены компоненты: Vision Backbone (150 строк), Language Decoder (250 строк), проекция модальностей (50 строк) и сама модель (100 строк). Все вместе с тренировочным циклом умещается в 750 строк — идеально для модификаций.
Созданная с помощью nanoVLM модель не претендует на звание прорывной, но дает отличную базу для экспериментов. Комбинация SigLIP-B/16-224-85M (визуальная часть) и SmolLM2-135M (языковая) создает компактную VLM на 222 млн. параметров. После 6 часов обучения на одном H100 GPU и 1.7 млн. примеров из датасета The Cauldron она показывает 35.3% точности на MMStar.
Начать работу можно 3 способами: клонировать репозиторий, запустить готовый Colab-ноутбук или использовать интерактивный туториал в формате ipynb. Даже если у вас нет доступа к топовому железу, эксперименты на Google Colab на бесплатном тиере вполне реальны. Установка максимально облегчена: зависимости минимальны, а логирование и загрузка параметров уже встроены.
nanoVLM отлично подойдет как образовательный проект или тренажер чтобы изучать VLM. В нем есть все для старта — от понятного кода до рабочих примеров. Если вы хотите создать свою мультимодальную модель, но боитесь сложностей, nanoVLM станет отличной песочницей для экспериментов.
🟡Модель
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #VLM #NanoVLM #Github
7–8 июня проводим Weekend Offer Analytics
Устроиться в Яндекс за выходные — реально. Ищем крутых аналитиков с опытом работы от 3 лет на Python, готовых работать в офисном или гибридном режиме.
Подавайте заявку до 3 июня — и всего за 2 дня пройдите технические собеседования. После сможете пообщаться с двенадцатью нанимающими командами и выбрать ту, которая покажется самой интересной. Если всё сложится хорошо, сразу же пришлём вам офер.
Узнать подробности и зарегистрироваться.
Реклама. ООО "Яндекс". ИНН 7736207543
🌟 Matrix-Game: модель для создания интерактивных игровых миров.
Skywork AI опубликовала Matrix-Game - модель с 17 млрд. параметров для генерации интерактивных игровых миров, способная создавать динамические сцены в Minecraft по заданным изображениям и пользовательским действиям.
Проект сочетает предобучение на неразмеченных данных с финальным этапом, где модель учится реагировать на клавиатурные команды и движения мыши. В основе паплайна - диффузионный метод, позволяющий контролировать движения персонажа, повороты камеры и физику объектов с высокой точностью.
На этапе предобучения использовался уникальный датасет Matrix-Game-MC, собранный из 2700 часов игровых видео без разметки и 1000 часов с детальными аннотациями действий, почищенный от нерелевантного контента, в него вошли только качественные сцены с четким освещением, стабильной камерой и активными действиями.
На втором этапе модель обучалась на записях движений в Unreal Engine и симуляциями в Minecraft через агентов VPT.
Под капотом Matrix-Game - 3D-VAE для кодирования видео и DiT для генерации. При автозавершении длинных видео (до 65 кадров) применяется архитектура с обратной связью: последние кадры служат контекстом для следующих сегментов.
Чтобы оценить возможности модели в генерации игровых миров, Skywork AI создали собственный комплексный бенчмарк GameWorld Score. Он учитывает визуальное качество, плавность переходов, управляемость и понимание физических законов.
Matrix-Game показала 95% точности в распознавании клавиатурных команд и 98% для движений мышью, превзойдя аналогичные модели Oasis и MineWorld. По другим критериям бенчмарка Matrix-Game корректно обрабатывает повороты камеры на 8 направлений и сохраняет 3D-консистентность объектов, избегая артефактов вроде «летающих» блоков.
Несмотря на высокие показатели в тестах, есть слабые места. В редких биомах (например, грибных ландшафтах) модель иногда теряет точность из-за недостатка данных. Также требует улучшений имитация физических взаимодействий.
В планах у разработчиков расширить датасеты обучения, внедрить долгосрочную память для последовательностей и адаптировать методику под другие игры: Black Myth: Wukong и CS:GO.
📌Лицензирование: MIT License.
🟡Страница проекта
🟡Бенчмарк
🟡Техотчет
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #GameAI #MatrixGame #SkyworkAI
🌟 UnifiedReward-Think-7B: первая reward-MMLM с CoT для визуального анализа.
Ресерчеры из Tencent и их коллеги создали UnifiedReward-Think-7B, первую мультимодальную модель, которая сочетает цепочки рассуждений с обучением с подкреплением.
Основная идея была в том, чтобы научить модель не только выдавать итоговую оценку, но и подробно объяснять ход мыслей. Например, анализируя сгенерированное изображение, она шаг за шагом проверяет соответствие текстовому запросу, качество деталей и логическую согласованность. Такой механизм не только повышает надежность оценок, но и помогает выявлять ошибки в сложных сценариях, где поверхностный анализ слишком трудоемкий.
Тестовую модель обучали в 3 стадии:
🟢«Холодный старт» - небольшой набор данных с примерами рассуждений, созданных GPT-4o, который учит модель формату CoT.
🟢Отбраковка выборок: модель генерирует собственные рассуждения для разных задач, а правильные варианты сохраняются для дальнейшей тонкой настройки.
🟢GRPO - на финальной стадии модель экспериментирует с ошибочными ответами, улучшая логику методом проб и ошибок.
Эксперименты показали, что UnifiedReward-Think обходит существующие аналоги. В задачах на понимание изображений она на 5-7% точнее базовой UnifiedReward-7b, созданной месяцем ранее. В генерации видео разрыв еще заметнее: модель лучше оценивает как соответствие запросу, так и плавность анимации.
📌Лицензирование: MIT License.
🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Набор датасетов
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #MMLM #CoT #UnifiedReward #Tencent
🤖 В Калифорнии открылся ресторан, где роботы готовят бургеры за 27 секунд
Вот именно для таких задач и нужны роботы — рутинная и однообразная работа, освобождая людей для более креативных и сложных задач.
@ai_machinelearning_big_data
#роботы #автоматизация #технологии
🌟 ReasonIR: обучение ретриверов для ризонинга.
Традиционные модели для поиска информации часто проваливаются в задачах, где нужны глубокие рассуждения: короткие фактологические запросы и простые документы из обучающих данных не учат их работать с многошаговыми вопросами.
ReasonIR был создан, чтобы решить эту проблему через синтетическую генерацию данных. Авторы создали ReasonIR-Synthesizer — пайплайн, который генерирует сложные запросы и «ложные» документы, похожие на полезные, но бесполезные на деле. Это заставляет модель учиться отличать настоящие паттерны, а не хвататься за поверхностные совпадения.
▶️Особенность метода — 2 типа данных:
🟢Первый, VL (varied-length), включает запросы длиной от 300 до 2000 слов, чтобы модель научилась работать с контекстом любой сложности.
🟢Второй, HQ (hard queries), — это вопросы, требующие анализа и логических шагов, например: «Как изменения климата повлияют на экономику прибрежных регионов к 2040 году?».
Для обучения тестовой модели ReasonIR-8B использовали контрастивное обучение с «хард негативами» (документами, которые кажутся релевантными, но таковыми не являются). Под капотом — доработанная LLama3.1-8B с двунаправленной маской внимания, обученная на смеси публичных данных (1,3 млн. примеров) и синтетики (около 345 тыс.).
На бенчмарке BRIGHT, (задачи из биологии, экономики и программирования), ReasonIR-8B показала 29.9 nDCG@10 без реранкера и 36.9 — с ним. Для сравнения: BM25, классический алгоритм, дает всего 14.8.
В RAG-сценариях модель подняла точность на MMLU на 6.4%, а на GPQA — на 22.6%, обогнав даже поисковик you.com. Причем чем детальнее переписывался запрос (например, добавлением контекста через GPT-4), тем лучше работала модель — другие ретриверы на длинных запросах «задыхались».
Авторы также оптимизировали вычисления: модель обходит LLM-реранкеры в 200 раз по эффективности, экономя ресурсы без потерь в качестве.
▶️Пример инференса на Transformers:
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("reasonir/ReasonIR-8B", torch_dtype="auto", trust_remote_code=True)
query = "The quick brown fox jumps over the lazy dog."
document = "The quick brown fox jumps over the lazy dog."
query_instruction = ""
doc_instruction = ""
model = model.to("cuda")
model.eval()
query_emb = model.encode(query, instruction=query_instruction)
doc_emb = model.encode(document, instruction=doc_instruction)
sim = query_emb @ doc_emb.T
📊 Данные ради данных — балласт. Данные в деле — драйвер роста.
28 мая на конференции Data&ML2Business в Москве и онлайн поговорим о том, как бизнес превращает данные в реальные результаты: оптимизацию процессов, рост продаж и новые продукты.
Что покажем:
– как «Кама» объединила телеметрию, производство и клиентские данные в единую BI-систему;
– генеративные модели в страховании и цифровом ритейле;
– речевая аналитика в клиентском сервисе на примерах от DDX и SpeechSense;
– кейсы от Яндекса, ЦИАН и Петровакс о гибридных data-архитектурах и масштабировании AI.
Идеально для C-level, продуктовых и дата-команд, которые строят системные решения и не хотят терять время на эксперименты.
Участие бесплатное. Подключайтесь онлайн или приходите в Москве. Регистрация доступна здесь.
🧩 Rivet — визуальная среда для создания сложных AI-агентов. Этот проект предлагает необычный подход к работе с LLM: вместо написания цепочек промптов в коде, вы собираете их как ноды в визуальном редакторе.
Особенность инструмента возможность встраивать созданные графы прямо в ваше приложение через TypeScript-библиотеку. Это превращает его из просто IDE в инструмент для production-разработки.
🤖 GitHub
@data_analysis_ml
Учите машины учиться? Тогда вам на IML
🗓️16–17 мая
📍 Питер + онлайн
IML — конференция для всех, кто использует ML в проектах. Здесь собираются ML-инженеры, дата-сайентисты, исследователи, аналитики и разработчики.
В этот раз вас ждет двухдневный технологический хардкор об NLP, RecSys, MLOps и Computer Vision. С докладами выступят спикеры из Яндекса, Positive Technologies, Т-Банка, Точки и других известных компаний.
А вот что с билетами:
→ Дают скидку 15% на билет для частных лиц по промокоду MACHINELEARNING
→ Есть билет для студентов и преподавателей вузов — в два раза дешевле персонального
→ Можно попросить руководство приобрести корпоративный билет
Бонус: в соседних залах пройдет Python-конференция PiterPy. Участники IML смогут послушать доклады PiterPy бесплатно.
За подробностями и билетами
🌟 NVIDIA добавила нативную поддержку Python в CUDA.
Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.
Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».
Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.
Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.
🟢Во-первых, появилась библиотека cuPyNumeric
— аналог NumPy
, который переносит вычисления с CPU на GPU буквально заменой импорта.
🟢Во-вторых, CUDA Core переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей.
🟢В-третьих, добавлены инструменты для профилирования и анализа кода, а ускоренные C++-библиотеки теперь доступны из Python без потерь в производительности.
Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.
Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.
Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.
🔜 Посмотреть полную презентацию на GTC 2025
@ai_machinelearning_big_data
#AI #ML #Python #CUDA #NVIDIA