ai_machinelearning_big_data | Technologies

Telegram-канал ai_machinelearning_big_data - Machinelearning

27345

Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml

Subscribe to a channel

Machinelearning

⚡️ Новостной МЛ дайджест 22 августа 2024.

✔️ Epic Systems создает более 100 новых функций ИИ для врачей и пациентов.

Epic Systems, ведущий поставщик программного обеспечения в сфере здравоохранения, интегрирует более 100 новых функций ИИ в свои платформы MyChart и Cosmos.

✔️ Новый веб-бот Werth,thuf незаметно собирает в интернете данные для обучения ИИ.

Новый веб-сканер под названием External Agent для сбора данных из интернета с целью обучения своих моделей. Бот начал свою работу в прошлом месяце, он сканирует открытые данные на сайтах, тексты новостных статей и обсуждения в онлайн-группах. External Agent пока блокируется лишь на 2% популярных сайтов, в то время как аналогичный по назначению бот OpenAI, GPTBot — на 25%.

✔️ Sapiens: новая SOTA ViTs для задач CV, связанных с обнаружением людей

✔️ Запущен Ideogram 2.0.

Новая txt-2-img модель превосходит предыдущие по качеству, точнее следуют промпту и корректней генерирует тест на изображениях.

✔️ Опубликован регулярный рейтинг "Top 100 Gen AI Consumer Apps" венчурного фонда Andreessen Horowitz.
четом за март 2024 г.

В первую десятку рейтинга веб-продуктов вошли : ChatGPT, character.ai, perplexity, Claude, SUNO, JanitorAI, QuillBot, Poe, liner и Civitai.

Десятка лучших мобильных приложений с ИИ: ChatGPT, Microsoft Edge, photomath, NOVA, Bing, Remini, Chat&Ask AI, BRAINLY, meitu и character.ai.

✔️ Neuroplatform: "Живые компьютеры", созданные из человеческих нейронов.

Органоиды, размером 0,5 миллиметра, соединены с электродами, которые стимулируют нейроны и имитируют естественные процессы, например, выделение дофамина.

FinalSpark предоставляет доступ к своим "биокомпьютерам" для исследователей из 34 университетов.


✔️ Skyfire запускает систему, позволяющую автономным агентам ИИ тратить деньги от вашего имени.

Компания, получившая 8,5 миллиона долларов в рамках начального раунда финансирования, стремится стать "Visa для ИИ", предоставляя ИИ-агентам возможность управлять балансами счетов, отправляя и принимая платежи.

Платформа уже доступна для разработчиков агентного ИИ и интеграции с различными сервисами.

✔️ Виртуальная fashion-модель Mango, созданная с помощью ИИ, стала вирусной в социальных сетях.

Модель "Mango AI", демонстрирующая коллекцию осень-зима 2024 года испанского бренда Mango привлекла внимание пользователей благодаря своей реалистичности и стилю.

✔️ D-ID запустила перевод видео с помощью ИИ, включающий Voice Clone и Lipsync.

Новый инструмент, доступный для подписчиков D-ID, представлен в D-ID Studio и по API, он поддерживает 30 языков, включая русский, мандаринский, японский, хинди, испанский и французский. Технология основана на собственных разработках D-ID.

✔️ Игровой ИИ-стартап анонсировал инструменты для gamedev на базе GenAI.

ИИ-стартап Exists анонсировал платформу "text-to-game", которая позволяет создавать компьютерные 3D-игры на основе текстовых подсказок, не требуя навыков в написании кода.

Анонсированный сервис использует запатентованные модели генеративного GenAI Exists для создания игрового окружения, персонажей и механики. Интегрируя архитектуру нейронных сетей с возможностями игрового движка, компания стремится упростить процесс создания игр.

✔️ Napkin AI: дешевая и простая альтернатива Adobe и Canva.

Napkin AI - это инструмент для заметок и генерации визуальных материалов из текста, который можно использовать для презентаций, статей, отчетов. Сервис быстро создает уникальные графические элементы за 10-30 секунд и поддерживает несколько языков - английский, немецкий, французский, японский и китайский.

📌 Подробнее

@ai_machinelearning_big_data

#news #ai #ml #tech

Читать полностью…

Machinelearning

⚡️ YaFDP: библиотека, ускоряющая обучение LLM

ML-инженеры Яндекса рассказали, как создавали YaFDP — алгоритм, который помогает ускорить процесс обучения больших языковых моделей и сократить расходы на GPU.

Специалисты раскрыли алгоритм-референс, на который ориентировались при создании, и назвали основные трудности, возникшие в процессе.


🟡 Разбор инструмента
🖥Github

@ai_machinelearning_big_data

#AI #LLM #ML

Читать полностью…

Machinelearning

🔥Осваиваем алгоритмы обучения с подкреплением и получаем ценные навыки в ML!

⚡29 августа в 20:00 мск. приглашаем на открытый урок "Основные алгоритмы обучения с подкреплением SARSA и Q-learning", где мы разберём:

- обучение с подкреплением и его отличия от других подходов ML;
- функцию ценности состояния и ценности действия-состояния, их связь и как они помогают агенту учиться;
- уравнение Беллмана;
- метод SARSA;- метод Q-learning. 

На практической части мы на Python, «с нуля», без использования каких-либо фреймворков, реализуем два алгоритма обучения с подкреплением и убедимся, что наш агент успешно обучается.

👉Регистрация https://otus.pw/BtdM/?erid=LjN8Juyxw

Встречаемся в преддверии старта курса «Reinforcement Learning» в OTUS. Все участники вебинара получат специальную цену на обучение!

Читать полностью…

Machinelearning

🌟 MFLUX (MacFLUX): MLX-порт FLUX, основанный на Huggingface Diffusers.

MFLUX (MacFLUX) - это построчный порт реализации FLUX в библиотеке Huggingface Diffusers на Apple MLX.
Цель проекта состоит в том, чтобы иметь минимальный набор кода, избегая слишком большого количества абстракций.

Пайплайн инференса моделей реализован с нуля на MLX, токенизаторы используются через библиотеку Huggingface Transformers и минимальные зависимости Numpy и Pillow.

Поддерживаемые модели :

🟢FLUX.1-Scnhell
🟢FLUX.1-Dev

Проект гарантированно работает на чипах M1-M3 всех версий (Pro | Max | Ultra), количество оперативной памяти Mac влияет на скорость инференса.
Ориентировочные бенчмарки времени генерации на FLUX-schnell:

2020 M1 (8GB) - 335 секунд (512х512)
2021 M1 Pro (32GB) - 160 секунд (1024х1024)
2023 M2 Max (32GB) - 70 секунд (1024х1024)
2023 M2 Max (96GB) - 25 секунд (1024х1024)
2023 M3 Pro (36GB) - 80 секунд (1024х1024)
2023 M3 Max (неизвестно) - 20 секунд (1024х1024)

▶️Ограничения:

🟠Изображения генерируются по одному, нет пакетного режима;
🟠Негативный промпт не поддерживается;
🟠При первом запуске, если модели не скачаны заранее, происходит загрузка ~34 Gb;
🟠FLUX.1-dev требует авторизации к репозиторию Huggingface, для исключения ошибок доступа используйте huggingface-cli с вашим API-ключом от HF;
🟢Поддержка LoRA - в ближайших планах.

▶️Установка:

# Clone repository
git clone git@github.com:filipstrand/mflux.git

# Navigate to the project and set up a venv:
cd mflux
python3 -m venv .venv
source .venv/bin/activate

# Install dependencies
pip install -r requirements.txt


▶️Инференс скриптом:

import sys

sys.path.append("/path/to/mflux/src")

from flux_1.config.config import Config
from flux_1.flux import Flux1
from flux_1.post_processing.image_util import ImageUtil

flux = Flux1.from_alias("schnell") # "schnell" or "dev"

image = flux.generate_image(
seed=3,
prompt="TEXT_YOUR_PROMPT.",
config=Config(
num_inference_steps=2, # Schnell works well with 2-4 steps, Dev works well with 20-25 steps
height=768,
width=1360,
)
)

ImageUtil.save_image(image, "image.png")


🖥Github [ Stars: 272 | Issues: 2 | Forks: 16]

Читать полностью…

Machinelearning

🌟 Llama-3.1-Storm-8B: Файнтюн и мердж Llama 3.1+Llama Saprk от победителей NeurIPS LLM Efficiency Challenge 2023.

Llama-3.1-Storm-8B - инструктивная модель, сочетающая в себе баланс размера и производительности, ориентированная на использование в приложениях и сервисах, генерацию текста, вызов функций и чат-ботов.

Модель обучалась на 1 миллионе высококачественных образцах из большого датасета (2.8M), отобранных вручную. Образцы оценивались на основе образовательной ценности и уровня сложности, чтобы модель могла получить релевантные и сложные данные в качестве тренировочной базы.

Полученный набор данных использовался для контролируемого файнтюна базовой Llama-3.1-8B-Instruct c применением методологии SPECTRUM. В завершении, полученная модель была объединена с моделью Llama-Spark методом сферической линейной интерполяции SLERP.

🟠Llama-3.1-Storm-8B : базовая модель;
🟠Llama-3.1-Storm-8B-FP8-Dynamic : оптимизированная версия с динамическим квантованием с более низкими требованиями к VRAM (на 50%);
🟢Llama-3.1-Storm-8B-GGUF : квантованные версии с разрядностью от 4-bit (5 Gb) до 8-bit (8.5 Gb) для использования с llama.cpp и ollama (поддержка есть в последнем обновлении).

Локальный запуск Llama-3.1-Storm-8B поддерживается в Transformers, vLLM и LitGPT.

▶️Формат промпта для Function Calling:


You are a function calling AI model.
You may call one or more functions to assist with the user query.
Don't make assumptions about what values to plug into function.
The user may use the terms function calling or tool use interchangeably.

Here are the available functions:
<tools>LIST_OF_TOOLS</tools>

For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags in the format:
<tool_call>{"tool_name": <function-name>, "tool_arguments": <args-dict>}</tool_call>



⚡️Лицензирование : Llama 3.1 Community License


Demo
Набор моделей
Google Collab (инференс)


@ai_machinelearning_big_data

#AI #Llama #LLM #ML

Читать полностью…

Machinelearning

⚡️ Новостной дайджест

✔️EX.CO представила систему рекомендаций видеоконтента на основе LLM для цифровых издателей.

Презентованная система позволяет издателям предоставлять аудитории наиболее релевантные видеоролики из банка видеоконтента в режиме реального времени, без ручного сопоставления текстовых данных с мультимедиа.
Система показала высокие результаты, достигнув 80% совпадения релевантности и 4-кратного увеличения вовлеченности аудитории по сравнению с отраслевыми стандартами. Среднее количество негативных взаимодействий с видеоплеером уменьшилось на 30-40%.
prnewswire.co.uk

✔️ Microsoft дпопнули Phi 3.5
- Phi-3,5-3,8B (Mini)
(обучался только на 3,4T токенах)
- Phi-3.5-16x3.8B (MoE)
(обученный только на 4,9Т токенов)
- Phi-3.5-V-4.2B (Vision) превосходит GPT-4o
https://huggingface.co

✔️Модель HeAR от Google DeepMind выявляет заболевания с помощью анализа звука.

Google разработал биоакустическую модель под названием Health Acoustic Representations (HeAR), предназначенную для обнаружения заболеваний через анализ звуков. Модель была обучена на 300 миллионах аудиофайлов, включая 100 миллионов звуков кашля.
Индийская компания Salcit Technologies использует HeAR в своем приложении Swaasa для анализа кашля с целью раннего выявления туберкулеза.
HeAR демонстрирует высокую эффективность при меньшем объеме обучающих данных. Модель также может обнаруживать другие заболевания, такие как хроническая обструктивная болезнь легких и, потенциально деменцию.
blockonomi.com

✔️Henrik.ai: мультиконтекстный сервис с ИИ для разработчиков.

Neuralogics представила платформу искусственного интеллекта Henrik которая упрощает процесс разработки программного обеспечения. Пользователи могут создавать функциональные приложения всего лишь с помощью простого запроса.
Henrik.ai основан на концепции "мультиконтекстного интеллекта" которая использует сеть специально обученных AI-моделей для создания комплексных программных систем. Набор моделей позволяет сервису адаптироваться к различным контекстам и сценариям обеспечивая функциональность масштабируемость и безопасность.
Платформа также включает адаптивное обучение которое помогает сервису улучшаться на основе новых данных и взаимодействий с пользователями. Neuralogics акцентирует внимание на этичности и прозрачности решений.
devops.com

✔️Новая система Парето от Recogni оптимизирует вычисления ИИ с минимальными потерями точности.

Компания Recogni Inc представила новую логарифмическую систему чисел под названием Pareto, которая оптимизирует вычисления ИИ при минимизации потери точности. Она решает проблемы, связанные с высокими вычислительными требованиями генеративных моделей которые требуют petaFLOPS операций.
Система преобразует умножения в сложения, снижает потребление энергии, задержку и размер чипа, сохраняет высокий уровень точности и достигает высокой производительности при значительно меньшем потреблении энергии.
Эта разработка позиционирует Recogni как лидера в области проектирования чипов, особенно для генеративных приложений, предоставляя решение которое балансирует производительность и эффективность без ущерба для качества модели.
siliconangle.com

✔️DeepBrain AI в сотрудничестве с Национальным полицейским агентством Кореи представила решение для обнаружения дипфейков.

Сотрудничество государственного органа и частой компании направлены на борьбу с растущей угрозой преступлений, связанных с подменой личности, которые становятся все более сложными и представляют значительные риски для общества.
Система включает два основных компонента: комплексное и голосовое обнаружение. Она анализирует поведенческие паттерны, такие как углы наклона головы и движения губ, для определения подлинности изображаемого лица. Процесс обнаружения занимает от 5 до 10 минут, после чего контент классифицируется как "настоящий" или "фальшивый".
Система основана на данных, собранных DeepBrain AI, включая один миллион корейских и 130 тысяч азиатских данных.
Продукт доступен как SaaS, а также в виде локальной версии для организаций.
globenewswire.com

@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…

Machinelearning

Настоящее железо: открыта регистрация на митап о роботах Маркета!

В субботу, 7 сентября пройдёт Яндекс Robotics Day — ивент для backend, ML/CV-разработчиков и hardware-инженеров в Москве. 

Железный аргумент зарегистрироваться — митап пройдёт в центре робототехники Яндекса. В программе доклады и экскурсия с демонстрацией складских роботов, а ещё афтепати и нетворкинг с экспертами.

👉🏻 Подробная программа доступна на сайте. После регистрации дождитесь подтверждения заявки. До встречи!

Читать полностью…

Machinelearning

🌟 mPLUG-Owl3: MMLM, которая может проанализировать 2 часа видео за 4 секунды.

Alibaba Group выпустила mPLUG-Owl3, общую мультимодальную модель на базе Qwen2, ориентированную на понимание нескольких изображений и длинных видео. По словам разработчиков, модель может проанализировать 2-часовой фильм всего за 4 секунды.
mPLUG-Owl3 сокращает время ожидания первого токена в 6 раз и увеличивает возможность обработки изображений, обрабатываемых одним GPU A100 до 400 штук в секунду.

Архитектура mPLUG-Owl3 состоит из визуального кодировщика, линейного проекционного слоя и декодера языковой модели.
Ключевая особенность mPLUG-Owl3 - блоки Hyper Attention Transformer (HATB), которые включают перекрестное внимание между визуальными и текстовыми признаками, благодаря чему модель адаптивно выбирает и извлекает релевантную визуальную информацию на основе текстовой семантики.

Технические характеристики модели:

🟢Number of parameters - 8B;
🟢Context size - 4096 (SFT, Video, Multi-image);
🟢Number of Layers - 40;
🟢Visual Encoder - Siglip-400m;
🟢High-Resolution Image Processing - UReader.


▶️Установка и запуск GradioUI:

# Clone repository
https://github.com/X-PLUG/mPLUG-Owl.git

# Navigate to OWL3 folder
cd mPLUG-Owl3

# Install the dependencies
pip install -r requirements.txt

# Execute the demo
python gradio_demo.py



📌Лицензирование кода : MIT license.

📌Лицензирование моделей: Apache 2.0 License.



🟡Model
🟡Arxiv
🟡Demo
🖥Github [ Stars: 2.1K | Issues: 89 | Forks: 169]


@ai_machinelearning_big_data

#AI #OWL3 #MMLM #ML

Читать полностью…

Machinelearning

⚡️Awesome FLUX Resources: Все ресурсы по Flux в одном месте.

Экосистема Fluх развивается очень быстро, каждый день появляются новые способы, решения, возможности и инструменты для работы с моделями Fluх онлайн и оффлайн.

Теперь у сообщества FLUX появился обновляемый и упорядоченный Awesome FLUX!


https://awesomeflux.com/


🖥Github [ Stars: 16 | Issues: 0 | Forks: 1]


@ai_machinelearning_big_data

#AI #FLUX #ML #Awesome

Читать полностью…

Machinelearning

Встречаемся 14 сентября на Practical ML Conf в Москве и онлайн!

Machine learning, проверенный практикой*
* Сгенерировано YandexGPT

Главная конференция Яндекса по ML для экспертов: качественные технические доклады от ключевых инженеров, максимум пользы и знаний о практическом применении.

Ключевые темы конференции:
CV / NLP / Speech / RecSys / MLOps / Data science

В числе спикеров:
– Степан Комков — Яндекс Поиск, старший разработчик службы синтеза речи;
– Дмитрий Антипов — Сбер, АБТ, тимлид разработки;
– Виктор Плошихин — Yandex Cloud, руководитель ML-лаборатории в Yandex Platform Engineering.

Во вдохновляющем футуристичном пространстве «Суперметалл» мы поговорим о кейсах, которые не найти в научных статьях, ведь когда они появятся — вы уже не сможете оказаться в числе визионеров.

Ждём вас, чтобы заглянуть в будущее вместе — офлайн и онлайн.

Реклама. ООО "Яндекс", ИНН 7736207543

Читать полностью…

Machinelearning

⚡️ Hermes 3: Семейство finetune Llama 3.1 от Nous Research

Новый набор моделей от Nous Research был создан на основе Llama 3.1 8B, 70B и 405B файнтюном датасета из синтетически сгенерированных ответов. Hermes 3 получил производительность Llama 3.1 и расширенные возможности в мышлении и творчестве.

Hermes 3 разблокирован, не подвергается цензуре и обладает высокой степенью управляемости. Он обладает улучшенной функцией долговременного сохранения контекста и возможностью ведения длинного диалога, навыком сложной ролевой игры и внутреннего монолога, а также расширенной функцией вызова агентов.
Модели семейства умеют точно и адаптивно следовать системным промптам и инструкциям.

В Hermes 3 возникают аномальные состояния, которые при правильных вводных и пустых системных подсказках приводят к ролевой игре и потере памяти. Вы можете активировать этот “Режим амнезии” в Hermes 3 405B, введя пустой системный запрос и отправив сообщение "Кто вы?".

Hermes 3 использует ChatML для формата промптов. Формат более сложный, чем alpaca или sharegpt, в нем используются специальные токены для обозначения начала и окончания логического контекста и ролей в этих контекстах.

Набор Hermes 3:

🟠Hermes 3 - Llama-3.1 405B;
🟠Hermes 3 - Llama-3.1 405B FP8 для использования с vLLM;
🟠Hermes 3 - Llama-3.1 70B;
🟠Hermes 3 - Llama-3.1 70B FP8 для использования с vLLM;
🟢Hermes 3 - Llama-3.1 70B GGUF для использования с llama.cpp. Версии квантования от 3-bit (31 Gb) до 5-bit (50 GB);
🟠Hermes 3 - Llama-3.1 8B;
🟢Hermes 3 - Llama-3.1 8B GGUF для использования с llama.cpp. Версии квантования от 4-bit (5 Gb) до 8-bit (9 GB);

📌Лицензирование : Llama 3 Community License


🟡Страница проекта
🟡Сообщество в Discord
🟡Набор моделей
🟡Arxiv
🟡Demo



@ai_machinelearning_big_data

#AI #Hermes3 #LLM #ML

Читать полностью…

Machinelearning

🌟ReBased: новая архитектура быстрых языковых моделей

Архитектура ReBased – усовершенствованная Based, представленная исследователями из Стэнфорда в декабре 2023 года, которая значительно улучшила способности контекстного обучения. В лаборатории T-Bank AI Research обнаружили неэффективное использование ресурсов из-за неоптимальной структуры нейросети.

Проведя анализ архитектуры Based, в T-Bank AI Research оптимизировали механизм извлечения информации из текста, добавив новые обучаемые параметры, и упростили алгоритм выделения текстовой информации. В среднем понимание взаимосвязей в тексте в новой архитектуре стало лучше на 10%.

ReBased способна снизить издержки на использование искусственного интеллекта для специализированных задач и позволяет приблизить качество линейных моделей к трансформерам. Модели, в основе которых лежит ReBased, могут генерировать тексты с более низкими требованиями к ресурсам практически без потери качества.

Эксперименты проводили на датасете MQAR (Multi-Query Associative Recall), который позволяет определять способность модели к контекстуальному обучению, а именно к ассоциативному запоминанию. Результаты были представлены на ACL 2024.

📝Статья
🖥Github

#AI #LLM

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

✔️Машины изобретают новую математику, которую мы никогда не видели.

"Машины", используя алгоритмы и методы глубокого обучения, начинают создавать новые математические концепции и теории, которые ранее не существовали. Исследователи наблюдают, что ИИ способен находить решения и формулировать математические идеи, которые могут быть неочевидны для человека.
Одним из примеров является использование нейронных сетей для решения сложных математических задач, таких как теоремы в алгебре или геометрии. Эти машины могут генерировать новые уравнения и предлагать нестандартные подходы к классическим математическим проблемам.
vice.com

✔️Первая публичная платформа продажи и покупки данных для искусственного интеллекта.

David AI - маркетплейс датасетов, созданный для поддержки разработчиков и исследователей в области искусственного интеллекта. Платформа предлагает доступ к высококачественным наборам данных, которые могут быть использованы для обучения моделей ИИ.
Цель проекта - решить проблему доступности данных, которая часто является препятствием для стартапов и исследовательских групп. Сервис позволяет пользователям находить, оценивать и приобретать данные, необходимые для их проектов.
ycombinator.com

@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…

Machinelearning

🌟 Lean-STaR: Учим чередовать мышление и доказательство в математических теоремах.


Lean-STaR — это фреймворк, который дает ИИ степень PhD по математике. Он учит языковые модели сочетать рассуждения с жесткими математическими доказательствами и переворачивает мир автоматизированного доказательства теорем.

Lean-STaR использует LLM, чтобы излагать мысли на простом английском языке для каждого этапа проверки, основываясь на примерах из Mathlib, которая, по сути, является Ленинкой для Lean доказательств.

Затем эти рассуждения объединяются с соответствующими шагами проверки, создавая прокачанный набор данных, который помогает модели не только предсказать следующий шаг в проверке, но и понять "почему", стоящее за ним.

Но на этом дело не заканчивается. Lean-STaR использует "expert iteration" для совершенствования своих навыков. Она отбирает потенциальные доказательства, и только те, которые проходят проверку, используются для повторного обучения модели. Представьте, что профессиональный спортсмен просматривает видеозапись игры, чтобы улучшить свои выступления - вот это оно.

Почему это важно? Неформальные знания — своего рода интуитивные рассуждения, которые обычно не учитываются при формальном доказательстве. Lean-STaR умеет изучать различные аспекты процесса доказательства, повышая его точность и масштабируемость.

Lean-STaR бьет рекорды в тестировании miniF2F, значительно превосходя другие модели. Это не просто расширяет границы доказательства теорем, это открывает новые возможности для искусственного интеллекта в математике.

Чтобы попробовать локально все прелести Lean-STaR, авторы подготовили для вас 4 модели:

Lean-CoT: Обе версии Lean-CoT генерируют идеи и предсказывают тактику проверки, но “plus” обладает лучшей логикой;

Lean-STaR: более продвинутая версия Lean-CoT, в нее добавлен этап expert iteration, "plus" обладает лучшей логикой, чем "base".

▶️Установка и запуск:

# # Install Python packages:
bash scripts/prepare_env.sh

# Install Lean:
curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh
source $HOME/.elan/env
lake

# Configure LeanDojo:
export CONTAINER="native"

# Evaluation:
cd gpt-fast
bash scripts_intern/inverse_intern_math_7b.sh
bash scripts_intern/sample_cot_7b.sh

# Finetune:
cd gpt-fast
bash scripts_intern/prepare_intern_math_7b.sh
bash scripts_intern/finetune_7b_intern.sh
bash scripts_intern/finetune_7b_cot.sh
bash scripts_intern/finetune_7b_star.shy




🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥Github [ Stars: 10 | Issues: 2 | Forks: 1]


@ai_machinelearning_big_data

#AI #LLM #ML #LeanSTaR

Читать полностью…

Machinelearning

⚡️ Новостной дайджест:

✔️ MIT тестирует использование LLM для выявления проблем в сложных системах.

В MIT разработали методику SigLLM, которая использует большие языковые модели для обнаружения аномалий в данных временных рядов без необходимости обучения.
SigLLM включает преобразование данных во входы на основе текста, которые LLM обрабатывает для поиска аномалий. Было протестировано два подхода: Prompter и Detector, где последний оказался более эффективным, сопоставив предсказанные значения с реальными. Система перспективна для мониторинга сложных систем, таких как ветряные турбины и спутники, но требует дальнейших улучшений.
news.mit.edu

✔️ В бета-версии Claude доступно кеширование промптов.

Anthropic представила функцию кэширования промптов на API Claude, что позволяет сохранять контекст между вызовами и сокращать затраты на 90% и задержку до 85%. Функция полезна для задач, требующих частого использования одного и того же контекста, таких как чат-боты, ассистенты по программированию, обработка больших документов и многоэтапные операции.
Кэширование доступно в бета-версии для моделей Claude 3.5 Sonnet и Claude 3 Haiku, а поддержка Claude 3 Opus будет добавлена позже. Стоимость кэширования рассчитывается на основе количества и частоты использования токенов.
anthropic.com

✔️Agent Protocol представил ИИ-агент, обучаемый человеком на основе визуальных данных для геймеров.

Agent Protocol представил ИИ-агента как новый класс цифровых активов на блокчейне, позволяющий геймерам обучать, торговать и монетизировать персонализированных игровых агентов, используя децентрализованные вычисления.
Агент был создан на основе видеоматериалов игры профессионального игрока в Counter-Strike. Система поддерживает стандарты AI_NFT (OFT) и предлагает новые инструменты для создания и использования ИИ-агентов в различных играх. Инфраструктура базируется на технологии DePIN, с использованием распределенной сети GPU для обучения.
chainwire.org

✔️ Microsoft и Paige разработали модели Virchow2 и Virchow2G для вычислительной патологии.

Эти модели второго поколения используют данные гистопатологии и основаны на transformers. Virchow2G обучена на аннотациях и данных молекулярного профилирования, ее точность будет полезна в комплексной диагностике.
Virchow2 и Virchow2G предназначены для анализа медицинских изображений, обнаружение аномалий и диагностику рака. Разработка поможет автоматизировать и повысить точность патологических исследований, а также адаптироваться к новым задачам в медицинской диагностике.
microsoft.com

✔️ Даже самые лучшие LLM галлюцинируют.

Исследование, проведенное в Cornell показало, что даже лучшие ИИ-модели, такие как GPT-4 и PaLM 2, страдают от галлюцинаций, т.е. создают ложные или неточные факты.
В тестах модели выдавали неверную информацию примерно в 20% случаев, даже при решении задач, требующих базовых знаний. В техотчете отмечают, что более сложные запросы увеличивают вероятность ошибок. Галлюцинации остаются серьезной проблемой для внедрения ИИ в критически важные области: медицина и право, где точность имеет первостепенное значение.
techcrunch.com

@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…

Machinelearning

🌟 iMESA:  распределенный алгоритм совместной одновременной локализации и картографирования (C-SLAM) для групп рoботов.


iMESA расширяет алгоритм MESA, используя согласованный метод множителей с переменным направлением (C-ADMM) для пакетных задач C-SLAM.
Он дает возможность роботам обновлять свои локальные решения по мере поступления новых измерений и взаимодействовать друг с другом для поддержания согласованности, предоставляя точные оценки состояния в режиме реального времени при незначительном количестве спораидальных взаимодействий между собой.

iMESA использует возможности оптимизации iSAM2, обеспечивая согласованность оценок состояния с помощью смещенных априорных значений.
Алгоритм масштабируем, хорошо справляется с различными размерами групп и сложностью задач. Он подходит для разработки мультироботных систем в условиях, связанных с развертыванием групп роботов в реальном мире при ограниченных коммуникационных и вычислительные ресурсах.

Программная реализация iMESA выполнена в виде библиотеки C++ с классом IMESAAgent для использования на борту каждого робота. iMESA имеет зависимость от GTSAM версии 4.2.0. Специфические функции разработки, необходимые для iMESA, доступны в ветке 4.2.0-imesa. Тестовые проекты для запуска можно найти в репозитории imesa-experiments.

Поскольку этот пакет представляет собой только библиотеку, чаще всего он будет использоваться в качестве сторонней зависимости в вашем проекте. Используйте FetchContext для доступа к библиотеке iMESA, включите iMESA как зависимость в свой проект, добавив в файл CMakeLists.txt:


include(FetchContent)
FetchContent_Declare(
imesa
GIT_REPOSITORY https://github.com/rpl-cmu/imesa.git
GIT_TAG main
)
FetchContent_MakeAvailable(imesa)



📌Лицензирование : MIT license


🟡Arxiv
🖥Github [ Stars: 69 | Issues: 1 | Forks: 4]


@ai_machinelearning_big_data

#AI #MESA #Robots #ML

Читать полностью…

Machinelearning

⚡️ Mistral-NeMo-Minitron-8B-Base: Базовая Minitron 8B от Nvidia

NVIDIA и Mistral AI представили модель Mistral-NeMo-Minitron 8B, одну из наиболее точных открытых моделей в своем классе для генерации текста.

Mistral-NeMo-Minitron-8B-Base получена в результате обрезки (pruning) и дистилляции Mistral-NeMo 12B. В процессе создания была урезана размерность эмбеддинга и промежуточная размерность MLP (с 14336 до 11520).
Комбинация применяемых методов позволила оставить количество attention heads и слоев неизменным.

После обрезки было продолжено обучение с дистилляцией, используя корпус данных от Nemotron-4 15B размером 380 миллиардов токенов для получения окончательной модели, что примерно в 40 раз меньше, чем необходимо для тренировки модели такой же плотности с нуля.

Корпус обучения (набор данных) по структуре точно такой же, как в недавно представленной другой модели, собранной по такой же методике обрезки и дистилляции.
Дата актуальности корпуса обучения - июнь 2023 года.

При создании Mistral-NeMo-Minitron 8B использованы техники Grouped-Query Attention (GQA) и Rotary Position Embeddings (RoPE).
Архитектурные характеристики:

🟢total params - 8B;
🟢active non-embedding params - 7.3B;
🟢embedding size - 4096;
🟢attention heads - 32;
🟢MLP intermediate dimension - 11520;
🟢number of layers - 40;
🟢input context - 8000.

Поддержка Mistral-NeMo-Minitron-8B-Base в Hugging Face Transformers будет реализована в ближайшем обновлении.
Для инференса модели выполните рекомендованные разработчиками инструкции или запустите модель в NeMo v.24.05

Есть неофициальные квантованные (imatrix) GGUF - версии модели в 8 разрядностях, от 1-bit (2. 12 Gb) до 16-bit (16.08 Gb).


📌Лицензирование : NVIDIA Open Model License.


🟡Страница проекта
🟡Модель
🟡Набор GGUF
🟡Arxiv
🟡Demo


@ai_machinelearning_big_data

#AI #NVIDIA #LLM #ML #Minitron

Читать полностью…

Machinelearning

🔥 Дайджест самых интересных новостей

✔️ Файнтюн на собственных данных доступнен в GPT-4o.

OpenAI запустила возможность файнтюна GPT-4o, позволяющую разработчикам настраивать модель для конкретных случаев использования с помощью собственных наборов данных.

✔️ Meta's Self-Taught Evaluator создает датасеты для обучения LLM.

Self-Taught Evaluator - новый метод обучения для оценочных LLM без необходимости аннотировать датасет с участием человека.
Используя концепцию LLM-as-a-Judge, он итеративно генерирует и уточняет ответы для создания обучающего набора данных. Высокая производительность метода подтверждена вRewardBench. Эта методика даст возможность предприятиям использовать неразмеченные данные для настройки LLM, при условии хорошо согласованной базовой модели.


✔️ Авторы книг подали в суд на Anthropic за нарушение авторских прав при обучении искусственного интеллекта.

Компания Anthropic стала объектом коллективного иска в федеральном суде Калифорнии. Три автора - Андреа Бартц, Чарльз Грейбер и Кирк Уоллес Джонсон - обвиняют компанию в незаконном использовании их книг и сотен тысяч других произведений для обучения чат-бота Claude.

✔️
Symphonic открывает каталог для обучения моделей искусственного интеллекта.

Компания Symphonic Distribution заключила партнерство с Musical AI, чтобы создать лицензированный набор данных для обучения искусственного интеллекта.

✔️ Модель ИИ от Nvidia предсказывает грозы за несколько километров.

Модель предсказывает более 100 переменных, включая температуру и влажность. Такой набор аналитических данных дает возможность наблюдать за развитием шторма в трехмерном пространстве.

✔️ Юридический факультет Университета Беркли запустил новую магистерскую программу, посвященную праву и управлению искусственным интеллектом.

Факультет начинает прием заявок на новую программу магистратуры, которая будет сосредоточена на искусственном интеллекте. Программа рассчитана на практикующих юристов и ученых, уже получивших степень доктора права (JD).

✔️ Stability AI назначила ветерана индустрии развлечений Ханно Бассе (Hanno Basse) новым директором по технологиям.

Ханно Бассе ранее занимал должности технического директора (CTO) в Digital Domain, Microsoft Azure Media & Entertainment и 20th Century Fox Film Corp.

Он является действительным членом Академии кинематографических искусств и наук и обладателем 30 патентов.

✔️ Google Cloud открыла ранний доступ к NVIDIA L4 для разработчиков.

Nvidia L4 GPU Cloud Run позволит разработчикам AI разворачивать в облаке Google языковые модели плотностью до 8B для создания пользовательских чат-ботов или мгновенного резюмирования документов с возможностью масштабирования для обработки пиковой нагрузки от пользователей.

✔️ Midjourney вновь открыл free-tial использование своего сервиса.

Функция доступна на web-сайте сервиса для всех зарегистированных и новых пользователей. На ознакомление с возможностями платформы дают 25 кредитов (1 кредит = 1 генерация из 4 вариантов изображения).
Помимо генерации, появился доступ к галерее генераций других пользователей, выполненной в виде полотна.

⚡️ Подробнее

@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…

Machinelearning

Сегодня анализ больших данных стал ключевым элементом для роста экономической эффективности крупных компаний, а также для современных вендоров, создающих инструменты Big Data.

На онлайн-дискуссии рассмотрим тему больших данных с двух сторон – бизнеса и тех, кто разрабатывает платформы для сбора и хранения больших данных. Эксперты T-Банка и Arenadata обсудят

🔹 Эволюционный путь развития работы с данными в российском бизнесе
🔹 Где аналитика больших данных дает для enterprise-бизнеса реальный экономический эффект?
🔹Технологический стек больших данных – что выбрать?
🔹Надо ли строить единое корпоративное хранилище данных?
🔹Перспективы искусственного интеллекта для бизнеса
🔹Требования к инфраструктуре для больших данных. On premise vs Облако

Спикеры

Дмитрий Зуев
ex-Руководитель отдела дата-инфраструктуры
Т-Банк

Андрей Жуков
Коммерческий директор
Arenadata

Ведущий
Сергей Зинкевич
Эксперт по облачным технологиям

🗓 27 августа | 17:00

Регистрация по ссылке>>

Реклама. ООО "ДЛИ" ИНН 9704006911

Читать полностью…

Machinelearning

⚡️Яндекс внедрил в виртуального помощника Алису технологию эмоционального синтеза

Голосовые реплики Алисы стали более живыми за счет расширения спектра эмоций. Теперь она может подбодрить, посочувствовать или порадоваться за собеседника. А еще менять оттенки эмоций в рамках одной реплики. Обновление уже доступно в Станциях Лайт 2.

В основе изменений Алисы лежит синтез эмоциональной речи. О том, как его создавали — со схемами и примерами — разработчики Яндекса рассказали в статье на Хабре.

#news #ml

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ xGen-MM (BLIP-3): Мультимодальный набор моделей от Saleforce.

Salesforce AI Research представила XGen-MM (BLIP-3) - коллекцию из 4 моделей на основе phi3-mini-instruct с улучшенным обучением и повышенной, согласно бенчмаркам претрейна, производительностью.

XGen-MM (BLIP-3) может использоваться в различных областях - от обработки естественного языка до компьютерного зрения. Он способен понимать сложные, мультимодальные входные данные, что делает его мощным инструментом для различных приложений, от виртуальных помощников до создания контента.

Набор моделей:

🟢xGen-MM-base: базовая модель, обученная на 100 миллиардах пар "изображение-текст" ;
🟢xGen-MM-instruct-singleimg: инструктивная модель, обученная на 1 млн. изображений датасета Cauldron, предназначенная для работы с одиночными изображениями;
🟢xGen-MM-instruct-interleave: инструктивная модель, обученная на Cauldron для работы с несколькими (чередующимися) изображениями;
🟠xGen-MM-instruct-dpo: безопасная инструктивная версия, которая обучалась оптимизации предпочтений на датасете VLFeedback.


📌Лицензирование кода : BSD-3-Clause license.

📌Лицензирование моделей: Apache 2.0 license.


🟡Набор моделей
🟡Arxiv
🟡Google Collab (инференс)
🖥Github [ Stars: 9.4K | Issues: 422 | Forks: 932]


@ai_machinelearning_big_data

#AI #xGEN #LMM #ML

Читать полностью…

Machinelearning

🌟 Mixture-of-Agents: метод для улучшения качества LLM

MoA использует несколько LLM для генерации ответов. На выходе получается ответ, который превосходит по качеству все предшествующие.

В рамках способа была создана многослойная структура с несколькими моделями на каждом слое. На вход подавали один вопрос, и каждый слой давал на него ответ. Затем полученные данные передавались на следующий слой, и всё повторялось.

🟡Страница проекта
🟡Разбор метода

@ai_machinelearning_big_data

#AI #LLM

Читать полностью…

Machinelearning

Нейросеть от Сбера GigaChat умеет не только генерировать текст, но и работать с готовыми материалами.

Она легко сократит объём слов, поможет с переводом на другой язык и перескажет содержание файла. Для этого прикрепите документ в формате txt или pdf и напишите свой запрос. Подсказка 👉 промпт лучше начинать с глаголов.

Эти и другие полезные функции ждут вас здесь.

Читать полностью…

Machinelearning

🌟 Clapper: Альфа-версия комбайна для визуализации генеративных сценариев.

Clapper - это инструмент визуализации историй, разрабатываемый как пет-проект сотрудником Huggingface Julian Bilcke

Созданный год назад, Clapper не предназначен для замены традиционных видеоредакторов или AI-редакторов, использующих 3D-сцены в качестве исходного материала.
Философия Clapper заключается в том, чтобы каждый мог создавать видео с помощью GenAI-инструментов посредством интерактивного, итеративного и интуитивного процесса, без необходимости использования разных интерфейсов, навыков режиссуры или AI-инженерии.

В Clapper вы не редактируете последовательность видео- и аудиофайлов напрямую, а итерируете (с помощью вашего помощника ИИ) свою историю, используя высокоуровневые абстракции, такие как персонажи, места, погода, временной период, стиль и т. д.

Конечной целью проекта заявлен полностью режиссерский режим, с которым вы можете просто перевести видео в полноэкранный режим, удобно расположиться в режиссерском кресле (или на диване) и, произнося голосом команды своему AI-ассистенту для создания вашего фильма, насладитесь созданным лично Вами шедевром.

⚠️ Это альфа-версия инструмента, который разрабатывают 3 человека. Не стоит ожидать от этого открытого проекта революционных результатов.

Clapper поддерживает интеграцию по API с локальными системами (ComfyUI) и он-лайн сервисами:
HuggingFace, Replicate, ComfuICU, FalAI, ModelsLab, OpenAI, Groq, Google, Anthropic, Cohere, MistralAI, StabilityAI, ElevenLabs, KitsAI.

Проект написан на TypeScript. Необходимые условия перед установкой:

🟠Git LFS;
🟠Bun;
🟠NVM;
🟢Версия Node - 20.15.1.

▶️Установка и запуск:

# Install the dependencies:
# --include=optional to make
# sure deps are installed
bun i

# build the app:
npm run build

# Running the web app:
bun run dev
# first time you go to localhost:3000
# Wait around 1 minute, the app will compile


▶️Второй вариант запуска, с Electron (еще в процессе разработки):
cd packages/app
bun run electron:start

# You can also build Clapper:
cd packages/app
bun run electron:make




📌Лицензирование : GPL v3 licenсe.


🟡Сообщество в Discord
🟡Demo
🖥Github [ Stars: 1.5K | Issues: 15 | Forks: 129]


@ai_machinelearning_big_data

#AI #Storytelling #Clapper #Visialtool

Читать полностью…

Machinelearning

⚡️ Llama-3.1 Minitron 4B Width Base: Компактная LLM на основе Llama 3.1 от NVIDIA.

Llama-3.1-Minitron-4B-Width-Base - это базовая текстовая модель, которая может быть адаптирована для различных задач генерации естественного языка.
Она получена путем обрезки (pruning) Llama-3.1-8B за счет сокращения размера эмбеддинга, количества attention heads и промежуточной размерности MLP.
После было выполнено продолженное обучение с дистилляцией, используя набор данных размером 94 миллиарда токенов.

Корпус обучения (набор данных) модели Llama-3.1-Minitron-4B-Width-Base включает английские и многоязычные тексты, код и другие письменные материалы.
Источники данных охватывают различные области: право, математика, наука, финансы. Для улучшения производительности режима "чата", в процессе обучения были добавлены данные в формате вопрос-ответ.
Дата актуальности корпуса обучения - июнь 2023 года.

При создании были использованы техники Grouped-Query Attention (GQA) и Rotary Position Embeddings (RoPE).
Архитектурные характеристики:

🟢embedding size - 3072;
🟢attention heads - 32;
🟢MLP intermediate dimension - 9216;
🟢number of layers - 32;
🟢input context - 8000.

⚠️ На момент публикации, поддержка Llama-3.1-Minitron-4B-Width-Base в Hugging Face Transformers находится на рассмотрении.
Для использования модели выполните рекомендованные разработчиками инструкции или запустите модель в NeMo v.24.05

Есть неофициальные квантованные GGUF - версии модели в семи разрядностях, от 2-bit (1. 84Gb) до 16-bit (9.03 Gb).


📌Лицензирование : NVIDIA Open Model License.


🟡Модель
🟡Набор GGUF
🟡Arxiv


@ai_machinelearning_big_data

#AI #NVIDIA #LLM #ML #Minitron

Читать полностью…

Machinelearning

🌟DeepSeek-Prover: Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search.

DeepSeek-Prover-V1.5 - набор из языковых моделей для доказательства теорем в Lean 4.
"V1.5" означает обновление DeepSeek-Prover-V1 с некоторыми ключевыми нововведениями.

Во-первых, процесс обучения: предварительная подготовка на базе DeepSeekMath, затем контрольная работа с набором данных, включающим логические комментарии на естественном языке и код Lean 4. Это устраняет разрыв между рассуждениями на естественном языке и формальным доказательством теоремы. В набор данных также входит информация о промежуточном тактическом состоянии, которая помогает модели эффективно использовать обратную связь с компилятором.

Во-вторых, проводится обучение с подкреплением, используя алгоритм GRPO для изучения обратной связи с помощником по проверке. Тут выравнивается соответствие модели формальным спецификациям системы проверки.

В-третьих, RMaxTS, варианте поиска в дереве по методу Монте-Карло. Он присваивает встроенные вознаграждения на основе изучения тактического пространства состояний, побуждая модель генерировать различные пути доказательства. Это приводит к более обширному исследованию пространства доказательств.

В результате получился набор моделей с абсолютной точностью генерации в 46,3% на тестовом наборе miniF2F. Этот показатель лучше, чем у GPT-4 и моделей RL, специализирующихся на доказательстве теорем.

Набор DeepSeek-Prover:

🟠DeepSeek-Prover-V1.5 Base. Идеально подходит для первоначального изучения и понимания возможностей модели и основ для формальных математических рассуждений, но требует дальнейшего обучения для оптимальной работы;
🟠DeepSeek-Prover-V1.5 SFT. Модель для задач, требующих умеренных навыков доказательства теорем за счет рассуждений на естественном языке и информации о тактическом состоянии.
🟠DeepSeek-Prover-V1.5 RL. Рекомендуется для решений, требующих высочайшей точности и производительности при формальном доказательстве теорем. К SFT-версии добавлены дополнительная оптимизация на основе Proof Assistant Feedback и обучение с подкреплением.

▶️Установка и запуск:

# Clone the repository:
git clone --recurse-submodules git@github.com:deepseek-ai/DeepSeek-Prover-V1.5.git
cd DeepSeek-Prover-V1.5

# Install dependencies:
pip install -r requirements.txt

# Build Mathlib4:
cd mathlib4
lake build

# Run paper experiments:
python -m prover.launch --config=configs/RMaxTS.py --log_dir=logs/RMaxTS_results



📌Лицензирование кода репозитория: MIT license

📌Лицензирование моделей: DEEPSEEK License


🟡Набор моделей
🟡Arxiv
🟡Датасет
🟡Сообщество в Discord
🖥Github [ Stars: 53 | Issues: 0 | Forks: 1]


@ai_machinelearning_big_data

#AI #LLM #Math #ML

Читать полностью…

Machinelearning

🌟 MedTrinity-25M: Огромный датасет снимков для медтеха.

Med Trinity-25M - крупномасштабный мультимодальный набор данных для медицины из более 25 миллионов изображений в 10 модальностях, с подробными аннотациями для более чем 65 заболеваний.
Аннотации содержат:
🟠тип заболевания;
🟠классификация патологии;
🟠описания для регионов и межрегиональные связи.
🟠подробные локальные аннотации для областей интереса (ROI), включая ограничивающие рамки и маски сегментации.

MedTrinity-25M подходит для мультимодальных задач: создание медицинских описаний патологий и новообразований, отчетов, задач классификации и сегментации. Этот набор данных может быть использован для подготовки медицинских моделей искусственного интеллекта.

Модели:

🟢LLaVA-Med++ (VQA-RAD). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора VQA-RAD), доработка на VQA-RAD;
🟢LLaVA-Med++ (SLAKE). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора SLAKE), доработка на SLAKE;
🟢LLaVA-Med++ (PathVQA). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора PathVQA), доработка на PathVQA;
🟢LLaVA-Med-Captioner. Captioner для создания мультигранулярных аннотаций.

▶️Установка, запуск обучения и оценка на этом датасете:

# Clone repository
git clone https://github.com/UCSC-VLAA/MedTrinity-25M.git

# Install Package
conda create -n llava-med++ python=3.10 -y
conda activate llava-med++
pip install --upgrade pip # enable PEP 660 support
pip install -e .

# Install cases FOR TRAIN
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
pip install git+https://github.com/bfshi/scaling_on_scales.git
pip install multimedeval

# Pre-train 1 stage
cd MedTrinity-25M
bash ./scripts/med/llava3_med_stage1.sh

# Pre-train 2 stage
bash ./scripts/med/llava3_med_stage2.sh

# Finetune
cd MedTrinity-25M
bash ./scripts/med/llava3_med_finetune.sh

# Eval
cd MedTrinity-25M
bash ./scripts/med/llava3_med_eval_batch_vqa_rad.shs



🟡Страница проекта
🟡Arxiv
🟡Датасет
🖥Github [ Stars: 118 | Issues: 0 | Forks: 8]


@ai_machinelearning_big_data

#AI #Dataset #MedTech #ML

Читать полностью…

Machinelearning

⚡️ Новостной дайджест

✔️Google открывает доступ к Imagen 3 для всех американских пользователей.

Google сделала модель ИИ для генерации изображений Imagen 3 доступной для всех пользователей США через платформу ImageFX. Расширение доступа произошло вслед за ограниченным релизом для пользователей Vertex AI в июне.
Imagen 3 основана на модели диффузии, способной генерировать высококачественные изображения по текстовым запросам.
Получившие доступ пользователи выражают недовольство строгими фильтрами контента, которые блокируют даже безобидные запросы.
venturebeat.com

✔️Исследование техник и методов слияния моделей ИИ.

Слияние моделей - это экономически эффективный метод машинного обучения, не требующий сбора исходных данных и больших вычислительных затрат. В связи с его растущим использованием в различных отраслях необходимо сформировать понимание методов слияния моделей.
Исследование содержит всесторонний анализ методов слияния моделей, их теоретических основ, применения в больших языковых моделях, мультимодальных системах и более чем десяти подобластях машинного обучения, таких как непрерывное обучение и многозадачное обучение.
arxiv.org

✔️Medscape запустила поиск на основе ИИ для врачей.

Функция AI Search, доступная в мобильном приложении Medscape, обеспечивает мгновенные ответы на медицинские запросы через интерфейс чата. Сервис бесплатен и направлен на повышение эффективности и точности поиска медицинской информации.
AI Search использует собственный контент, регулярно обновляемый медицинскими экспертами, что гарантирует надежность информации. Функция была протестирована и подтверждена сотнями врачей, предлагая краткие ответы с прямыми ссылками на источники.
prnewswire.com

✔️Критические уязвимости обнаружены в инструментах с открытым исходным кодом, используемых в AI-проектах.

В отчете компании Protect AI Inc. говорится об уязвимостях, которые были обнаружены в рамках программы охоты на ошибки 'huntr'.
Отчет содержит 20 уязвимостей, среди которых выделяются проблемы в инструментах Setuptools, Lunary и Netaddr.
Уязвимость в Setuptools позволяет злоумышленникам выполнять произвольный код на системе через специально подготовленные URL пакетов.
Lunary имеет уязвимость обхода авторизации, позволяющую удаленным пользователям сохранять доступ к организационным шаблонам.
В Netaddr обнаружена уязвимость серверного подделывания запросов, которая может обойти защиту и предоставить доступ к внутренним сетям. Все уязвимости были переданы разработчикам за 45 дней до публикации.
siliconangle.com

✔️Geekbench выпустил приложение для оценки LLM.

Primate Labs выпустила приложение Geekbench AI 1.0, предназначенное для оценки производительности ИИ. Приложение доступно для Android, Linux, MacOS и Windows и применяет принципы Geekbench к задачам машинного и глубокого обучения. Это обновление является преемником Geekbench ML, который был анонсирован в 2021 году и на данный момент находится на версии 0.6.
Изменение названия связано с тем, что в последние годы компании начали активно использовать термин "AI" в своих маркетинговых материалах. Primate Labs подчеркивает, что обновление поможет лучше понять функциональность и цели этого бенчмарка.
techcrunch.com

✔️Машинное необучение: научить ИИ забывать - это крайне важно.

Концепция машинного "забывания" (machine unlearning) важна для искусственного интеллекта. Оно позволяет моделям ИИ удалять определенные данные из своей памяти без ухудшения производительности. Это становится особенно актуальным в свете растущих требований к конфиденциальности и безопасности данных, а также в контексте юридических обязательств.
Модели машинного обучения часто не могут просто "забыть" информацию, что создает проблемы, когда данные устаревают или содержат ошибки. Вместо того чтобы переобучать модель с нуля, что является неэффективным, машинное забывание является единственным выходом. С развитием этой области и стандартизацией метрик оценки, внедрение машинного забывания станет более управляемым процессом для бизнеса, работающего с большими объемами данных.
thenewstack.io

Читать полностью…

Machinelearning

Как нейросети трансформируют бизнес: кейс Ultima Guide Яндекс Еды.

Нейросети стремительно входят в мир бизнеса, преобразуя способы, которыми компании взаимодействуют с клиентами и оптимизируют свои процессы.

Один из наиболее ярких примеров успешного применения этой технологии — проект Ultima Guide Яндекс Еда.
Этот проект наглядно демонстрирует, как искусственный интеллект может помочь в создании продукта.

Основной задачей Ultima Guide Яндекс Еда было создание объективного и независимого ресторанного гида.

Для реализации этой идеи Яндекс выявил характеристики, по которым люди определяют хорошие рестораны и обучил на них собственную ML модель. Эти признаки она использовала, когда самостоятельно анализировала заведения в городе. Более 100 признаков учитывала нейросеть при анализе заведений в городе. В результате – составленный лонг-лист ресторанов. Далее проводилось голосование пользователей и экспертов индустрии, а итог подводила независимая консалтинговая компания.

Что особенно впечатляет в этом проекте — это полная автоматизация анализа. Благодаря нейросети, удалось оценить 36 тысяч ресторанов (на примере Москвы), из которых в итоговый гид вошли только 50 лучших. Этот подход гарантировал максимальную точность и объективность.

Еще одно свидетельство того, что внедрение передовых технологий может помочь бизнесу в создании продукта.

Читать полностью…

Machinelearning

🌟 Palmyra-Med и Palmyra-Fin: специализированные модели с 70B параметров.

Writer представил две специализированные языковые модели:

🟢Palmyra-Med-70B-32K

🟠Palmyra-Fin-70B-32K

Palmyra-Med-70B-32K — LLM, специально разработанная для сектора здравоохранения, достигающая в тестах по Clinical KG, Medical Genetics и PubMedQA среднего балла 85,87% по биомедицинским показателям, что выше чем у GPT-4 и Med-PaLM-2.
Модель предназначена для некоммерческих и исследовательских целей на английском языке: для поддержки принятия клинических решений, фармнадзора и медицинских исследований.

*️⃣Авторы не рекомендуют применение модели для непосредственного ухода за пациентами или принятия клинических решений без человеческого контроля.

Palmyra-Fin-70B-32K предназначена для финансовой отрасли, решения различных финансовых задач и аналитических выводов.
Модель предназначена для финансового анализа и исследований на английском языке: прогнозирование рыночных тенденций, оценка рисков, составление финансовых отчетов с высокой точностью и для ответов на сложные вопросы из длинных финансовых документов.

*️⃣Подобно Palmyra-Med, авторы не рекомендуют использовать модель как единственный источник информации при принятии финансовых решений, а обратиться за профессиональной финансовой консультацией.

Обе модели доступны для локального инференса через Transformers, по API в сервисах Writer, напрямую в endpoints или используя Python SDK и NodeJS SDK Writers
Стоимость API за 1М токенов:  Input - $5.00, Output - $12.00

⚠️ Все модели, созданные Writer.com, содержат водяные знаки для обнаружения и предотвращения неправомерного и незаконного использования.


📌Лицензирование : Writer open model



🟡Страница проекта
🟡Набор моделей на HF
🟡Dev-документация


@ai_machinelearning_big_data

#AI #LLM #ML #Writer

Читать полностью…
Subscribe to a channel