ict_advanced | Cryptocurrency

Telegram-канал ict_advanced - ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

5097

کلیه محتوای این چنل رایگان است و رایگان باقی خواهد ماند .اشتراک هر سیگنال فقط جهت آموزش است .ورود به این چنل یعنی شما به استاپ لاس و مدیریت ریسک پایبند هستید .🛑 https://x.com/ICT_ADVANCED?t=6pj7NrzWBVhkPO8zqcsfIQ&s=09

Subscribe to a channel

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

LowDerika-Farshid-Hekmati.mp3

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

تا اینجا رو داشته باشید :)

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

یک دانشمند انگلیسی این مسئله رو حل میکنه و میگه برای اعداد اینتیجر بزرگتر از دو معتبر نیست.!

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

You're referring to the famous equation:
x^n + y^n = z^n
This is Fermat's Last Theorem, which states:

There are no positive integers that satisfy the equation for any integer .

Summary:
For and , there are solutions:
: Trivially,
: This gives Pythagorean triples, like
For : No positive integers can satisfy the equation
Fermat's Claim (17th century):
Pierre de Fermat famously wrote in the margin of his book that he had a "truly marvelous proof," which he never provided.
Final Proof (1994):
The theorem was proven by Andrew Wiles, using advanced mathematics involving:
Elliptic curves
Modular forms
Ribet's Theorem (linking Fermat's Last Theorem to the Taniyama–Shimura conjecture)
The full proof is very long and goes far beyond elementary algebra or number theory.
Would you like:
An example of how it fails for specific values?
An outline of Wiles's proof at a high level?
More on the history or math involved?

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

Solve it
Then you solve all charts

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

A private key is a randomly selected number that is kept secret. This key is used to create the digital signature and is crucial to the security of the algorithm.

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

### Elliptic Curve Digital Signature Algorithm (ECDSA) Explanation

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a form of public key encryption that is used for creating digital signatures. It is widely used in various cryptographic systems, including Bitcoin and Ethereum, for proving ownership of private keys and ensuring the authenticity of messages.

Here’s a breakdown of ECDSA and how it works:

1. Elliptic Curves:
ECDSA uses elliptic curve cryptography (ECC), which is based on the mathematics of elliptic curves. These curves have specific properties that make them suitable for creating secure, smaller-sized keys compared to traditional RSA encryption. An elliptic curve is defined by the equation:

$$
y^2 = x^3 + ax + b
$$

where $a$ and $b$ are constants that define the specific curve.

2. Private Key:
A private key is a randomly selected number that is kept secret. This key is used to create the digital signature and is crucial to the security of the algorithm.

3. Public Key:
The public key is derived from the private key using elliptic curve point multiplication. The public key can be freely distributed without compromising the security of the private key.

4. Signature Generation:
When signing a message, the following steps are involved:

* Hash the message (e.g., using SHA-256) to produce a digest.
* Choose a random number $k$ and calculate a point on the curve: $R = k \times G$, where $G$ is the generator point of the curve.
* Calculate the signature using the equation:

$$
r = x_R \mod n
$$

$$
s = k^{-1}(z + r \times d) \mod n
$$

Where:

* $x_R$ is the x-coordinate of the point $R$
* $d$ is the private key
* $n$ is the order of the curve
* $z$ is the message hash
* $k^{-1}$ is the modular inverse of $k$

5. Signature Verification:
To verify the signature, the verifier uses the signer's public key and checks the validity of the signature against the original message hash. The signature is valid if it satisfies certain mathematical properties, ensuring the message wasn’t tampered with and it originated from the owner of the private key.

### ECDSA in C# Example

To implement ECDSA in C#, the .NET framework provides built-in libraries that simplify the process. The ECDsa class in the System.Security.Cryptography namespace provides an API for working with elliptic curve cryptography.

Here’s an example code that demonstrates how to generate a key pair, sign a message, and verify the signature:

#### Example Code:

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

حین اینکه داشتم اون ربات رو می ساختم

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

🎮😎

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

چون بچه های خوبی بودن من هم یه ربات AI. راهنما بهشون هدیه میدم

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

Touch_me

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

بعد میگن چرا استارت اپ ها و شرکت های داخلی حمایت نمیشن
من بهتون میگم
چون در روز روشن دزدی میکنن این بدبختای دوزاری

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

اگر بین صرافی های داخلی میخواهید از خدمات API استفاده کنید
همچنین چند ربات از پیش تعریف شده
میتونید از این پلتفرم استفاده کنید .
با این لینک ثبت نام 15 درصد تخفیف کارمزد ها هم شامل حالتون میشه .
قیمت تتر هم من چندین بار چک کردم منصفانه هست
لینک ثبت نام

پ ن -» هیچ صرافی والت و محل نگهداری سرمایه شما نیست

صرافی فقط محل مبادله است 🎮

پ ن
لینک متعلق به من viper نیست از یکی از بکس گرفتم :)

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

BE SAFE FOLKS . IT WILL BE . IF NOT TODAY . DONT GIVE UP

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

I AM THE MAN WHO CRACKED ALL FINANCIAL MARKETS .

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

یک بی سواد هیچ ایرانی .
از انتهای نا کجا
قراره فک بزرگترین دانشمند معاصر اون ها در ریاضیات رو اینجا کف این چنل بزنه .


بیا بازی کنیم جناب سر اندرو :)

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

و سپس لقب sir از پادشاهی انگلستان دریافت میکنه

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

Yes — exactly.
For , there are no positive integers such that:
x^n + y^n = z^n
This is the statement of Fermat's Last Theorem, and it was proven by Andrew Wiles in 1994.
✅ Let's break it down:
For :
There are integer solutions. These are Pythagorean triples like:
3^2 + 4^2 = 9 + 16 = 25 = 5^2
There are no solutions with positive integers.
No matter how large , , and are, you will never find a case where:
x^n + y^n = z^n
holds true with all three being positive integers, if .
But be careful:
You can still compute:
z = \left(x^n + y^n\right)^{1/n}
but this z is not an integer when . That’s exactly what the theorem says — it never lands on an integer that satisfies the equation.
Would you like Pine Script to highlight this — like turning red if z is not an integer?

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

https://youtu.be/YjCWIsdOQ3w?si=y6KvxZ58NPRn6_2q

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

https://www.youtube.com/watch?v=W2VXXfDIF9g

📥 @topsaverbot 📹720p

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

using System;
using System.Security.Cryptography;
using System.Text;

class ECDSADemo
{
static void Main()
{
// Step 1: Create a new ECDSA key pair
using (ECDsa ecdsa = ECDsa.Create(ECCurve.NamedCurves.nistP256))
{
// Step 2: Get the public and private keys (the private key is used for signing)
byte[] privateKey = ecdsa.ExportECPrivateKey();
byte[] publicKey = ecdsa.ExportSubjectPublicKeyInfo();

Console.WriteLine("Private Key: " + Convert.ToBase64String(privateKey));
Console.WriteLine("Public Key: " + Convert.ToBase64String(publicKey));

// Step 3: Sign a message
string message = "This is a message to sign.";
byte[] messageBytes = Encoding.UTF8.GetBytes(message);
byte[] signature = ecdsa.SignData(messageBytes, HashAlgorithmName.SHA256);

Console.WriteLine("Message: " + message);
Console.WriteLine("Signature: " + Convert.ToBase64String(signature));

// Step 4: Verify the signature using the public key
bool isValid = VerifySignature(publicKey, messageBytes, signature);
Console.WriteLine("Signature valid: " + isValid);
}
}

// Step 5: Verify the signature
static bool VerifySignature(byte[] publicKey, byte[] messageBytes, byte[] signature)
{
using (ECDsa ecdsa = ECDsa.Create())
{
// Import the public key
ecdsa.ImportSubjectPublicKeyInfo(publicKey, out _);

// Verify the signature
return ecdsa.VerifyData(messageBytes, signature, HashAlgorithmName.SHA256);
}
}
}


### Explanation of Code:

1. Create ECDSA Key Pair:
We use ECDsa.Create(ECCurve.NamedCurves.nistP256) to generate an ECDSA key pair based on the NIST P-256 curve, which is widely used in Ethereum and other cryptographic systems.

2. Export Private and Public Keys:

* ExportECPrivateKey() exports the private key.
* ExportSubjectPublicKeyInfo() exports the public key in a standard format.

3. Sign Data:

* SignData() signs the message using the private key and a specified hash algorithm (SHA-256 in this case).
* The message is first converted into a byte array (messageBytes).

4. Verify Signature:

* VerifySignature() verifies if the signature is valid for the given message using the public key. The verification process checks the integrity and authenticity of the signature.

### Key Notes:

* The SHA256 algorithm is often used with ECDSA to hash the message before signing, as it produces a fixed-length hash that is processed by the elliptic curve.
* The curve used in the example (nistP256) is commonly used for Ethereum and Bitcoin.
* The private key should never be shared or exposed. The public key can be freely shared to allow others to verify your signatures.

### Summary

The ECDSA algorithm involves generating a private-public key pair, using the private key to sign a message, and the public key to verify the signature. The example in C# demonstrates how to use .NET’s ECDsa class to handle elliptic curve cryptography operations, such as signing and verifying messages.

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

Be safe folks
عاشقش بشید
تا موفق بشید

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

https://share.cody.bot/9f4c3136-d8c5-4e1b-ae01-6b37f324115c

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

دستان جادوگر . وقتشه

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

https://help.bitpin.ir/fa/category/bat-maaamlhgr-16rfbju/

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

یادم باشه ماهی هزار تومن بزنم به حساب از گشنگی نمیری الما اکسچنج

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

چند روز پیش از صرافی داغون آلما تتر خریدم
این پلشت ها تتر رو فریز کردن سه روز گفتن دستور پلیس فتاست

بعد از سه روز تتر رفت بالا
تراکنش منو حذف کردن و ریال ریختن
به حسابم
خاک بر سرت ALMA.EX

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

Sad Bar Goftomet - Golom Golom.mp3

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

AND I AM NOTHING IN NJOTHING IN NOTHING AT END .S OF NOTHINGNESS

Читать полностью…

ICT𝘼𝘿𝙑𝘼𝙉𝘾𝙀𝘿️(𝐙𝐞𝐭𝐚 𝐜𝐢𝐫𝐜𝐥𝐞 𝐢𝐧𝐧𝐞𝐫 𝐜𝐢𝐫𝐜𝐥𝐞 𝐯𝐢𝐩𝐞𝐫️)™️

Enjoy
Be safe folks :)

Читать полностью…
Subscribe to a channel